
Analysing protein post-translational modform regions by linear
programming
Deepesh Agarwal1,∗, Ryan T. Fellers 2,∗, Bryan P. Early2,∗, Dan Lu1, Caroline J. DeHart2, Philip D. Compton2, Paul
M. Thomas2, Galit Lahav1, Neil L. Kelleher2, and Jeremy Gunawardena1,†

1Department of Systems Biology, Harvard Medical School, Boston, MA 02111, USA
2National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL 60208, USA
∗These authors contributed equally
†Corresponding author: Jeremy Gunawardena (jeremy@hms.harvard.edu)

Post-translational modifications (PTMs) at multiple sites can collectively influence protein function but the
scope of such PTM coding has been challenging to determine. The number of potential combinatorial patterns
of PTMs on a single molecule increases exponentially with the number of modification sites and a population of
molecules exhibits a distribution of such “modforms”. Estimating these “modform distributions” is central to
understanding how PTMs influence protein function. Although mass-spectrometry (MS) has made modforms
more accessible, we have previously shown that current MS technology cannot recover the modform distri-
bution of heavily modified proteins. However, MS data yield linear equations for modform amounts, which
constrain the distribution within a high-dimensional, polyhedral “modform region”. Here, we show that linear
programming (LP) can efficiently determine a range within which each modform value must lie, thereby ap-
proximating the modform region. We use this method on simulated data for mitogen-activated protein kinase
1 with the 7 phosphorylations reported on UniProt, giving a modform region in a 128 dimensional space. The
exact dimension of the region is determined by the number of linearly independent equations but its size and
shape depend on the data. The average modform range, which is a measure of size, reduces when data from
bottom-up (BU) MS, in which proteins are first digested into peptides, is combined with data from top-down
(TD) MS, in which whole proteins are analysed. Furthermore, when the modform distribution is structured, as
might be expected of real distributions, the modform region for BU and TD combined has a more intricate poly-
hedral shape and is substantially more constrained than that of a random distribution. These results give the
first insights into high-dimensional modform regions and confirm that fast LP methods can be used to analyse
them. We discuss the problems of using modform regions with real data, when the actual modform distribution
will not be known.
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INTRODUCTION1

Post-translational modifications are ubiquitous on most proteins and greatly increase the number of “proteoforms”2

which participate in cellular processes [1]. Certain modifications require carrier molecules which donate the modifying3

moiety and enzymes to regulate both forward modification and reverse demodification [19, 27]. Phosphorylation on4

S, T or Y residues, for example, requires ATP as the carrier molecule and enzymatic regulation is undertaken by5

protein kinases and phospho-protein phosphatases. Background cellular processes maintain the concentrations of6

carrier molecules, thereby acting like a chemical battery to drive the modifying reactions. This energy-dissipating7

architecture confers a distinctive regulatory capability on such reversible, enzymatically-regulated post-translational8

modifications (hereafter, “PTMs”) [19], on which we will focus in this paper.9

Proteins are often modified on multiple amino-acid residues (sites) as well as by different kinds of PTMs. For10

instance, the transcription factor and “guardian of the genome”, p53, is known to be modified on over 100 sites [4].11

If these PTMs were all binary modifications, which would either be present or absent, then the number of potential12

combinatorial patterns of modification on a single p53 molecule is 2100 ≈ 1.3×1030. This illustrates the extraordinary13

PTM complexity that can surround even a single cellular protein. Of course, not all these patterns of modification can14

be present at any one time but that only begs the question of which patterns are present and what their functions are.15

Since PTMs effectively replace amino acids by different chemical residues, it is not surprising that they influence16

protein function. It is not just PTM at a single site but also the pattern of PTMs across an entire protein molecule which17

can modulate what that molecule does. There is now evidence from many biological contexts of extensive crosstalk18

between different modified sites [9, 14, 20, 25, 7]. This has suggested the existence of PTM “codes” [2, 13, 26, 15,19

17, 6, 16, 8, 24, 11]. The histone code is the best known [8, 24] but p53 itself exhibits complex PTM “barcodes”20

which determine its varied responses in different cellular circumstances [15]. In this conceptual picture, upstream21

enzymes “write” and “erase” modifications on a target protein to create “codewords”, which are subsequently “read”22

by downstream processes. While this idea of information encoding is attractive [19], it has been challenging to confirm23

the biochemical details in any context. In view of the key role played by PTMs in so many cellular processes, clarifying24

how PTMs process information has become a central problem of systems biology.25

We have previously introduced a quantitative language for analysing this problem [18, 19]. We refer to a combi-26

natorial pattern of PTMs across a single protein molecule as a “modform”. As noted above, the number of potential27

modforms increases exponentially with the number of modification sites. A given protein will be present within a cell28

as a population of single molecules and each molecule can, in principle, exhibit its own modform. The most compre-29

hensive measure of the protein’s PTM state is therefore given by the abundance of each modform in the population,30

which we call the “modform distribution”. This can be thought of as a histogram over the modforms or as a point in31

a high-dimensional space, in which each dimension, or coordinate axis, corresponds to a specific modform (Fig.1).32
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If we are to determine how information is encoded by PTMs, then estimating a protein’s modform distribution, at a33

given time and in a given biological context, is essential. This is the main concern of the present paper.34

There are a limited number of methods for measuring PTMs. Modification-specific antibodies have been of great35

importance and have unrivalled sensitivity, including at single-cell level through immunostaining. However, at best,36

they can only detect PTMs on nearly adjacent sites and are oblivious to the overall modform. Moreover, in comparison37

to other methods, their quantitative accuracy is suspect [18]. Nuclear magnetic resonance spectroscopy (NMR) is38

highly quantitative and can reveal certain modform features as well as interactions with binding partners [10, 18] but39

the limitation to bulk in-vitro measurements has only recently been lifted [12]. Mass spectrometry (MS) remains, at40

present, the method of choice for estimating modform distributions [18].41

In the most-widely used “bottom-up” MS (BU MS), proteins are first proteolytically cleaved into peptides before42

chromatographic separation and mass determination [21]. So-called “middle-down” MS (MD MS) uses fewer cleav-43

ages and correspondingly larger peptides [23]. Peptide modforms can be partly resolved during chromatography and44

further determined by rounds of fragmentation (MSn) in the spectrometer, allowing peptide modform distributions45

to be estimated. However, cleavage severs correlations between modforms on different peptides, leaving the protein46

modform distribution undetermined [18]. It has seemed conceivable that with multiple proteases with different cleav-47

age patterns, it might still be feasible to reconstruct the protein modform distribution. However, we recently showed48

mathematically that this is impossible, no matter how many cleavage patterns and proteases are available and that,49

furthermore, the shortfall in information required to determine the modform distribution increases exponentially with50

the number of modification sites [3].51

Although not yet so widely used, MS can now be undertaken on an intact protein by “top-down” MS (TD MS),52

which maintains correlations across the protein [22]. It is harder to separate protein modforms by chromatography53

but isobaric modforms, such as positional isomers, can be isolated within the spectrometer, thereby simplifying the54

analysis. Fragmentation (MSn) can again help to determine modforms but is more difficult to undertake with good55

coverage for intact proteins. With current TD MS technologies, which rarely go beyond MS3, the information shortfall56

required to determine the modform distribution is reduced but still increases exponentially [3].57

An alternative approach to estimating the modform distribution arises from realising that all MS methods lead to58

linear equations in the modform amounts [3]. For example, suppose that the amounts of modforms 1 to 16 in Fig.1 are59

x1, · · · , x16. These are the coordinates of the modform distribution in the 16-dimensional modform space. If BU MS60

is undertaken with a protease which cleaves between the second and third sites and the modform of the first peptide in61

which both first and second sites are occupied (blue and magenta colours) is measured, then it follows that,62

x6 + x12 + x13 + x16 = A ,
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where A is the amount of the peptide modform. The protein modforms numbered 6, 12, 13 and 16 contribute the63

appropriate peptide modform after cleavage, while the other protein modforms do not. Similarly, if we assume that64

each colour in Fig.1 represents a PTM with a different mass, then it is possible to determine by TD MS the total65

amount of those protein positional isomers with, for instance, one blue and one green PTM. This yields the equation,66

x7 + x11 = B , (1)

where B is the total amount. These linear equations cannot determine the modform region, as noted above, but67

they do constrain it, especially when taken together with the requirement that amounts cannot be negative, so that68

x1, · · · , x16 ≥ 0. For instance, this implies from Eq.1 that 0 ≤ x7 ≤ B. Additional equations may constrain this69

range still further [18]. The totality of equations arising constrain the modform distribution to lie within a bounded70

region in the high-dimensional space of all modforms (Fig.1, right). Because of the linearity of the equations, this71

region must be convex and polyhedral. We refer to it as the “modform region”. The high-dimensional shape of this72

region can be informative as to which modforms dominate the population. By perturbing the cellular conditions,73

the change in shape of the region can tell us which PTMs are implicated. It may then become feasible to test how74

information is being represented by PTMs across the entire protein and to thereby unravel the nature of PTM coding.75

The modform region can be thought of as a data-centric proxy for the modform distribution.76

With that idea in mind, the present paper puts forward a methodology for approximately estimating the shape77

of the modform region from MS data. It is based on linear programming, which offers an efficient algorithm for78

determining optimum solutions to linear equations or inequalities. We describe the approach and show how it works79

with simulated data. This gives the first insights into high-dimensional modform regions. We discuss the problems of80

using these methods on actual data.81

RESULTS82

Linear equations for MS methods83

It is necessary to have a systematic way to generate the linear equations described above. In previous work, we84

introduced a mathematical formalism for doing so [3] but this was restricted to binary modifications, such as phos-85

phorylation, which are either present or absent. This restriction permits a modform to be identified with the subset86

of modified sites. Here, we extend the formalism to allow for more complex modifications [19, 27]. We explain the87

formalism in generality but, for clarity of exposition, focus on those PTMs which are most relevant to the data acquired88

below. A more complete treatment will be given subsequently. We use set theory notation, as explained in [3], which89

may be consulted for more background.90
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Suppose that a protein has n sites of modification (hereafter, “sites”), indexed 1, · · · , n in order from, say, the91

N-terminus. Let S = {1, · · · , n} be the set of sites. Because different PTMs target different amino-acid residues, it is92

necessary to keep track of which residue occurs at which site. Let A denote the set of relevant amino-acid residues.93

For instance, if only phosphorylation is being considered, we might take A = {S,T,Y}, using the customary one-94

letter codes for amino-acids. We note that phosphorylation may also occur on H and E [19] but ignore that here for95

simplicity. Let ρ : S → A be the residue map, which assigns to each site i ∈ S, the corresponding amino-acid residue,96

ρ(i) ∈ A. This residue map is a property of the particular protein under study.97

We now specify PTMs and define modforms. Let M denote the set of relevant, structurally-distinct PTMs, in-98

cluding 0 for the absence of modification. For instance, if acetylation and methylation are being considered, then99

M = {0,Ac,Me,Me2,Me3}, using the customary abbreviations for PTMs. Polymeric modifications, such as ubiq-100

uitination and ADP-ribosylation, present a complication, as the number of distinct structures may be unbounded and101

must be indexed in some manner [19]. In principle, this could be done but the details are beyond the scope of the102

present paper and we ignore such PTMs here for simplicity. We can think of a protein modform as a function,103

χ : S → M, which assigns to a site i ∈ S, the corresponding PTM, χ(i) ∈ M. However, such an assign-104

ment must be consistent with the residue map ρ. The precise consistency requirement will depend on A, M and105

ρ but if we consider as an example phosphorylation, acetylation and methylation, so that A = {S,T,Y,K} and106

M = {0,P,Ac,Me,Me2,Me3}, then for χ : S →M to be consistent as a modform, it is necessary that107

if χ(i) = P then ρ(i) ∈ {S,T,Y}

if χ(i) ∈ {Ac,Me,Me2,Me3} then ρ(i) = K .
(2)

Other consistency conditions can be readily formulated depending on the PTMs being considered. We will say that108

the function χ is consistent and write χ : S →ρ M if χ satisfies the appropriate consistency conditions with respect109

to ρ, as in Eq.2, for the PTMs under consideration. We can now identify modforms with the consistent χ’s. They can110

be visualised as in the following example modform on 8 sites,111

1(K) 2(S) 3(S) 4(K) 5(Y) 6(T) 7(K) 8(K)

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Ac 0 P Me3 P P 0 Me2 .

(3)

Eq.3 makes clear the resemblance between the modform as defined here and the representation that is often used112

in the literature, in which the sequence of modifications are listed, K1Ac.S3P.K4Me3.Y5P.T6P.K8Me2. When the113

sites are known, it is more convenient to denote this Ac.0.P.Me3.P.P.0.Me2 and we will use that format below. The114

number of potential modforms can be calculated from the consistency conditions. For instance, for the example just115
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considered, the consistency conditions in Eq.2 imply that there are 2 possibilities for the modification state of S, T116

and Y and 5 possibilities for the modification state of K, so that the total number of combinatorial possibilities is117

5× 2× 2× 5× 2× 2× 5× 5 = 2454 = 10000.118

If we only consider a binary modification like phosphorylation, so thatM = {0,P}, then the function χ : S →M119

can be identified with the subset of modified sites, {i ∈ S |χ(i) = P}. Sets were sufficient for our previous work,120

which involved only such binary modifications [3]. For the more complex modifications considered here, we need121

functions, χ : S →M.122

Let M(S) denote the set of protein modforms, M(S) = {χ : S →ρM}. A modform distribution is an assignment123

to each modform of an amount. This corresponds to a function, x : M(S)→ R, from the set of modforms to the real124

numbers, R. Here, x(χ) is the amount of modform χ, which corresponds to the height of the corresponding bar in125

the modform histogram in Fig.1. Since amounts are non-negative, x(χ) ≥ 0, for all χ (which we will write x ≥ 0).126

The functions M(S) → R form a vector space, which we will denote RM(S) [3]. The dimension of this vector space127

is given by the number of protein modforms, or the size of M(S). If X is any finite set, its size will be denoted #X ,128

and we will use N to denote the number of protein modforms, so that N = #M(S). A standard basis for RM(S) is129

provided by the unit vectors corresponding to each modform, which lie on the coordinate axes in the modform space130

in Fig.1. Let e(χ) ∈ RM(S) denote the unit vector corresponding to the modform χ. As a function on M(S),131

e(χ)(χ1) =

 1 if χ = χ1

0 otherwise
(4)

and a modform distribution can be expressed as a linear combination of these basis vectors,132

x =
∑

χ∈M(S)

x(χ)e(χ) .

Up to now, we have discussed protein modforms, defined on the entire subset S = {1, · · · , n}, but the same133

notation may be used for any segment of the protein that arises through cleavage or fragmentation. Modification sites134

on the segment are given the same indices as they have in the protein—the protein determines the universe in which135

the segments are considered—so that a segment can be identified with a subset of sites, T ⊆ S. This segment has136

corresponding segment modforms in M(T ). It will be convenient to refer to modforms in M(T ) as T -modforms, so137

that protein modforms are S-modforms.138

Cleavage or fragmentation are two of the basic procedures in mass-spectrometry, out of which many mass-139

spectrometry experiments are built up. The effect of these procedures is described by a linear segment function,140

cS1
: RM(S) → RM(T ), which takes S-modforms to T -modforms. This function is defined on basis vectors by restric-141
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tion of the function. If f : X → Y is a function and X1 ⊆ X , then the restriction of f to S1, denoted f |X1 , is just the142

composition X1 ⊆ X
f→ Y . If χ ∈M(S), then the segment function is given by,143

cT (eχ) = eχ|T .

Since this linear function takes a basic vector to a basis vector, its corresponding matrix has entries which are either144

0 or 1. Consider, for example, S = {1, 2, 3}, ρ(1) = ρ(2) = S, ρ(3) = K, andM = {0,P,Me,Me2,Me3}. There145

are 2.2.4 = 16 S-modforms. The segment corresponding to the subset T = {2, 3} has 8 T -modforms. The process of146

cleavage or fragmentation that creates T yields the segment function, cT , whose 8× 16 matrix is given by,147

0.0.0 0.0.Me 0.0.Me2 0.0.Me3 0.P.0 0.P.Me 0.P.Me2 0.P.Me3 P.0.0 P.0.Me P.0.Me2 P.0.Me3 P.P.0 P.P.Me P.P.Me2 P.P.Me3

0.0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0.Me 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0.Me2 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

0.Me3 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

P.0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

P.Me 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

P.Me2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

P.Me3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

. (5)

Here, the modforms of the standard basis vectors in RM(S) and RM(T ) are listed on the top and left, respectively, in148

the sequence format introduced above.149

We have mathematically described cleavage and fragmentation as linear functions on intact proteins, with the150

domain of the functions being RM(S). But fragmentation can also be carried out recursively on any segment, T1 ⊆ S.151

We can define corresponding segment functions on RM(T1) in the following way. Note first that given any pair of152

subsets, T1, T2 ⊆ S, for which T2 ⊆ T1, there is a natural embedding of the smaller vector space RM(T2) in the larger153

vector space RM(T1). We can consider a T2-modform, χ ∈ M(T2), as if it were a T1-modform by setting all sites in154

T1 which are outside T2 to have no modification. In other words, we define, ν : M(T2)→M(T1) by, for all i ∈ T1,155

ν(χ)(i) =

 χ(i) if i ∈ T2

0 otherwise .

This function ν : M(T2)→ M(T1) defines an embedding of M(T2) inside M(T1). In turn, ν yields an embedding of156

RM(T2) inside RM(T1), which is defined on basis vectors by sending eχ to eν(χ) for each T2-modform χ ∈M(T2). We157

will denote this embedding, for any pair of subsets, T2 ⊆ T1, by RM(T2) ↪→ RM(T1). Now, if T2 ⊆ T1 is considered158

to be a fragment of T1, we can define the T2-segment function on T1-modforms by the composition159

RM(T1) ↪→ RM(S) cT2−→ RM(T2) .
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We will denote this composition, with some abuse of notation, also by cT2 : RM(T1) → RM(T2).160

Cleavage or fragmentation may result in identification and measurement of the segment modforms. This may161

come about through separation prior to MS or through further fragmentation within the spectrometer or both. In such162

cases, the end result is an estimate of the modform distribution of the segment, for which matrices like those in Eq.5163

give the necessary linear equations. It is also possible that only MS1 is undertaken on the segment. MS1 can resolve164

modforms with different masses but is unable to resolve isobaric modforms with the same mass. This can be an issue165

for individual PTMs: the nominal mass of phosphate (80 Da) is the same as that of sulphate and that of acetyl (42 Da)166

is the same as that of tri-methyl (3 × 14). Modern spectrometers, which are accurate to a few parts per million, can167

resolve the actual mass differences between such PTMs if the segment is not too large. However, they cannot resolve168

positional isomers. We will deal with the case of positional isomers here. Extending the formalism to cover isobaric169

modforms is straightforward but requires more notation.170

The target of the resulting linear function is no longer a vector space of the kind RM(T ). To describe it, let171

χ1 ∼ χ2 denote that the modforms χ1, χ2 ∈ M(S) are positional isomers. The precise definition depends on the172

PTMs involved and care has to be taken with those like methylation which have multiple valencies. If m ∈ M and173

χ ∈ M(S), let nm(χ) denote the number of sites having modification m, nm(χ) = #{i ∈ S |χ(i) = m}. If, for174

instance,M = {0,P,Ac,Me,Me2,Me3}, then, χ1 ∼ χ2 if, and only if,175

nP(χ1) = nP(χ2)

nAc(χ1) = nAc(χ2)

nMe(χ1) + nMe2(χ1) + nMe3(χ1) = nMe(χ2) + nMe2(χ2) + nMe3(χ2)

It is clear that the relation ∼ is an equivalence relation on modforms and we can therefore form the set of equivalence176

classes, I(S). Let [χ] ∈ I(S) denote the equivalence class containing χ, [χ] = {χ1 ∈ M(S) |χ1 ∼ χ}, and let e[χ] be177

the corresponding standard unit vectors in RI(S), defined in a similar way to Eq.4. Then, MS1 measurement yields a178

linear mass function, iS : RM(S) → RI(S), from modforms to positional isomers, which is defined on basis vectors by,179

iS(eχ) = e[χ] .

It is straightforward to define positional isomers for any segment T ⊆ S, which yields the set I(T ) and the corre-180

sponding mass function, iT : RM(T ) → RI(T ). As with cleavage or fragmentation, the resulting matrices, like that in181

Eq.5, have entries which are 0 or 1.182

Mass spectrometry experiments are typically composed of a sequence of the basic procedures of cleavage, frag-183

mentation and MS1 measurement. For instance, the intact protein may be first cleaved by proteolytic digestion into the184

segment T1 ⊆ S, which is then fragmented into the segment T2 ⊆ T1, which is then subjected to MS1 measurement.185
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The overall effect on modforms is described by the linear function which is the composition of the corresponding186

segment and mass functions,187

RM(S) cT1−→ RM(T1)
cT2−→ RM(T2)

iT2−→ RI(T2) . (6)

The overall matrix for the composition can be obtained by multiplying the individual matrices. The dimension of the188

overall matrix in this case is #I(T2)×N , with the number of columns always being the number of protein modforms,189

as in Eq.5. Since the composition still sends basis vectors to basis vectors, the overall matrix still has entries which are190

either 0 or 1. The overall matrices arising from each of the individual compositions of basic procedures can be abutted191

“vertically” to form a single matrix,M , of size r×N , where r is the total number of rows of the overall matrices taken192

together. The matrix M summarises the outcome of whatever mass spectrometry experiments have been undertaken193

as a system of linear equations for the unknown protein modform distribution, x ∈ RM(S),194

M.x = d , (7)

where d is the r × 1 column vector of actual measurements.195

There are other mass spectrometry procedures, such as isolating positional isomers prior to fragmentation [3]. It196

is not difficult to define linear functions for these, in a similar way to what has been done above, but the procedures197

described here cover many cases, including those needed for the simulations below. We now turn to asking what can198

be determined from these linear equations.199

Modform region estimation by linear programming200

As shown previously, the system of linear equations given by Eq.7 is not sufficient to determine the unknown modform201

distribution, x ∈ RM(S), [3] but it can be used to constrain the distribution within a region of RM(S) (Fig.1, right).202

We can estimate this region by linear programming (LP). LP is about solving (“programming”) the following type of203

optimisation problem, for which we use the same notation as in Eq.7,204

maximise (or minimise) l(x)

subject to M.x = d

and x ≥ 0

(8)

Here, x is a N × 1 column vector of unknowns, l(x) is a linear objective function of x, l(x) =
∑
i lixi for li ∈ R,205

which is specified below, M is the known r × N matrix in Eq.7 and d is the r × 1 column vector of known data206

values in Eq.7. Algorithms have been developed which allow LP problems with millions of unknowns to be solved207

efficiently. This makes LP particularly attractive for modform region estimation, in which the number N of unknown208
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modform amounts may be extremely large.209

The first requirement for using LP is that the problem should be feasible. In other words, there must be a value of x210

which satisfies the linear system M.x = d. In our case, the value of d will be affected by several kinds of error, arising211

from sample preparation, instrumentation and measurement, so it is possible that the linear system is infeasible. If so,212

we first find the smallest perturbation of d which yields a feasible solution. The standard procedure is to introduce213

for each data value, di, a pair of non-negative elastic, or slack, variables, ui ≥ 0 and vi ≥ 0, such that the vector of214

perturbed data values, di + ui − vi becomes feasible. We need two non-negative elastic variables because we may215

sometimes have to increase di and sometimes have to decrease it. We can formulate this as an LP problem in which216

we seek to minimse the total perturbation,
∑
i(ui + vi), subject to the linear system,217

(M | Ir | Ir)


x

−u

v

 = d ,

and the inequality constraint x, u, v ≥ 0. Here, we have extended x “vertically” by abutting the vectors −u and v218

to make an unknown vector of size N + 2r and we have extended M “horizontally” by abutting two r × r identity219

matrices, to make a matrix of size r × (N + 2r). It is easy to see that this linear system is equivalent to,220

M.x = d+ u− v ,

as required. The solution of this LP problem allows us to replace the data vector d by the perturbed data vector221

d∗ = d+u−v, for which there is a feasible solution. By minimising the total perturbation, d∗ is the most parsimonious222

way to reach feasibility, from a linear perspective.223

We now want to know the shape of the modform region defined by the feasible linear system M.x = d∗, with224

x ≥ 0. An approximate estimate of the shape can be obtained by using LP to find the minimum and the maximum of225

each modform amount, xi,226

maximise/minimise xi

subject to M.x = d∗

and x ≥ 0 .

(9)

This gives the range within which each modform amount falls, as optimally constrained by the MS data.227

Range determination through this LP formulation has the advantage of being easy to undertake efficiently for large228

N . However, it may provide a limited estimate of the actual modform region. For example, if the linear system229

consists solely of Eq.1 in the Introduction, then the corresponding modform region is the line segment between the230

points (0, B) and (B, 0) in Fig.2. However, the ranges of x7 and x11 which come from Eq.9 are both [0, B]. This231
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would be same as if the modform region had been the square whose side length is B (Fig.2, magenta box). This is232

also what happens in general: determination of each range by Eq.9 yields the smallest “hyper-rectangle” whose sides233

are parallel to the coordinate axes and which contains the modform region (Fig.2). In the situation in Fig.2, the hyper-234

rectangle is a “hyper-square”, with equal sides, but this need not always be the case, as we will see. The individual235

ranges do not reveal the coupling between x7 and x11 which keeps the modform region one-dimensional rather than236

two-dimensional but its presence can be inferred from the hyper-square structure of the ranges.237

Modform regions in high dimensions238

We have implemented the LP algorithm in Eq.9 in an open-source software environment, modformPRO. This is writ-239

ten in Python and exploits Python’s linear programming library, PuLP (available from https://pythonhosted.240

org/PuLP/#). The software can take as input MS peak-intensity data, or simulated data, for real proteins, construct241

the corresponding linear equations for the relevant MS experiments (Eq.7), set up the LP problems (Eq.9), call PuLP to242

solve them and provide the output as ranges for each modform. We chose as an example the human mitogen-activated243

protein kinase 1 (MAPK1, Erk1, UniProt ID P28482), with all seven phosphorylations reported on UniProt on the244

sites S29, T185, Y187, T190, S246, S248 and S284, as marked in Table 1. This gives a total of 27 = 128 modforms.245

This is well below the software’s capability but our concern in this paper is not with performance of the algorithm but,246

rather, what it tells us about high-dimensional modform regions, which are investigated here for the first time. In this247

respect, 128 dimensions is already considerable and the output can only just be visualised on the printed page.248

We created two simulated modform distributions for MAPK1 as follows. Consider a phospho-modform as a binary249

string, where 1 marks the presence of P and 0 marks the absence. The Hamming distance between two modforms is250

then the number of bits by which they differ. The first simulated distribution (“structured”) is one in which the251

modforms are organised around 4 “modes” with some “noise”. Specifically, we chose 4 modforms at random and gave252

them each a weight of 100. To each modform at Hamming distance 1 from these 4, of which there are 7, we gave a253

weight of 10u where u was a randomly chosen integer between 2 and 8. These are the “modes”. For the “noise”, we254

chose 20 modforms at random and gave them weights that were randomly chosen real numbers in [0, 30]. If modforms255

coincided during this procedure, we added up the weights. There should then be nearly 58 modforms with non-zero256

weights. Finally, we normalised the distribution to the total weight. For the second simulated distribution (“random”),257

we gave each modform a weight that was a randomly chosen real number in [0, 100] and normalised to the total weight.258

Although in-vivo data is not yet available, data obtained by in-vitro phosphorylation suggests that modform dis-259

tributions may be structured, in the sense that few protein modforms arise, despite large numbers of phosphorylated260

sites [5]. The distinction between the structured and random distributions attempts to reflect this.261

In modformPRO, we computationally specified one experiment on MAPK1 of BU with tryptic digestion followed262
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by MS1 on the cleavage peptides and one experiment of TD MS1. Fig.3 shows the range estimations for the structured263

distribution for each dataset individually and the two datasets combined together. The BU ranges are more variable264

than the TD ranges, reflecting proteolytic digestion, and they also vary over a broader range, reaching nearly 48% in265

some cases. However, the average range for BU MS (23.69) is only slightly higher than that for TD MS (22.11). The266

average range drops much further (16.94) when both datasets are combined.267

Fig.4 shows the range estimation for the random distribution. Since the experiments are the same, a similar pattern268

of range variation occurs as for the structured distribution. However, in this case the average range for BU (26.76) is269

considerably higher than for TD (21.04) and the average range for the combined datasets (18.53) does not improve as270

much over TD.271

The exact dimension occupied by the modform region depends on the rank of the matrix M in Eq.7. The rank272

is readily determined for TD MS1, as the resulting equations use distinct variables and must necessarily be linearly273

independent. Here, the rank is 8 and the dimension of the modform region for TD is therefore 120. The rank is visible274

in the block-like arrangement of the TD plots in Fig.3 and 4, in which the ranges fall into a small number of distinct275

sets. TD MS1 cannot distinguish positional isomers, so we expect from Table 2 that the blocks should follow the276

binomial distribution on 7 sites: 1 (0P), 2−8 (1P), 9−29 (2P), 30−64 (3P), 65−99 (4P), 100−120 (5P), 121−127277

(6P) and 128 (7P). Each set of distinct ranges defines a hyper-square like that in Fig.2. 8 hyper-squares are visible278

for the random distribution but only 7 for the structured. A closer look at the numerical values shows that the 8th279

hyper-square is present but is visually indistinguishable in the plot. These hyper-squares reveal the polyhedral shape280

of the modform region in high-dimensions.281

The rank for BU MS is more delicate. Each peptide arising from proteolytic cleavage gives rise to linearly indepen-282

dent equations but there are dependencies between the equations from different peptides. We previously determined283

a formula for the rank for BU MS given any number of proteases and patterns of cleavage [3]. If there is a single284

protease giving P peptides and peptide i gives rise to ei equations, then the rank of the equations coming from all the285

peptides taken together is,286 (
P∑
i=1

ei

)
− P + 1 .

Here, proteolytic cleavage of MAPK1 gives 4 peptides with 1, 2, 1 and 3 modifications and, therefore, 2, 3, 2 and 4287

equations, respectively. Hence, the 11 equations arising from BU have rank 11 − 4 + 1 = 8. This modform region288

for BU therefore also has dimension 120. This is harder to see in the BU range estimation because the hyper-square289

arrangement is shuffled in the modform ordering. For the structured distribution, 7 hyper-squares are visible in the290

plot and a closer look at the numerical values reveals an 8th. For the random distribution, 6 hyper-squares are visible291

and no more are found numerically, presumably because they escape numerical resolution.292

No formula currently exists for the rank of the equations for TD and BU combined, although this is work in293
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progress. We independently determined the rank of the 19 equations to be 14, so that the dimension of the modform294

region decreases to 104. For the random distribution, we found only 12 hyper-squares, suggesting that the remainder295

were numerically unresolved. However, for the structured distribution we found 17 hyper-squares. These included296

2 modforms, the completely unmodified with index 1 and the fully modified with index 128 (Table 2), whose values297

were exactly determined to be 0. This is not surprising because TD MS1 already accurately accounts for these specific298

modforms (Fig.3, middle). The larger number of hyper-squares is unexpected, however. It implies the presence of299

hyper-rectangles, which are defined by more than one distinct range. This indicates that the polyhedral shape of the300

modform region has become more intricate. Indeed, the dimensions of the hyper-squares are smaller, and there are301

more hyper-squares with smaller dimensions, for the structured than for the random distribution (Fig.5). The smaller302

the dimension of the hyper-square, the more constrained are the corresponding variables (Fig.2). We see from Fig.5303

that the polyhedral shape of the structured modform region is more nuanced and considerably more constrained than304

that of the random distribution.305

DISCUSSION306

It is evident from Figs.3 and 4 that the ranges estimated by modformPRO are quite coarse and do not constrain the307

actual modform value tightly. However, the purpose of estimating the modform region is not to recover the modform308

distribution. This is impossible, as we have discussed. Rather, the modform region is the best that can be done, given309

the available data. The question is, then, what can be learned about such regions using the LP algorithms implemented310

in modformPRO?311

Modforms regions are defined by the linear equations in Eq.7. The more linearly independent equations that are312

available, the smaller the dimension of the modform region. It is not surprising, therefore, that combining TD and313

BU data yields a region of smaller dimension. However, the dimension of a region depends only on the matrix M in314

Eq.7 and is the same irrespective of the protein and the modform distribution being analysed. The dimension tells us315

nothing about the size or shape of the region, which depend both on M and on the MS data, which is specified by d316

in Eq.7 and which represents the modform distribution. We have seen that combining TD with BU data reduces the317

size, as measured by average modform range, for both the structured and the random distributions. This reiterates the318

importance of combining MS methods, especially combining those which cleave proteins (BU and MD) with those319

which do not (TD).320

The shape of the modform region is also informative. Because modforms regions are defined by linear equations,321

they are convex and polyhedral but the specific polyhedral shape depends, like the size, on both the matrix M and the322

data d in Eq.7. The regions that result from BU or from TD have simple polyhedral shape: up to numerical resolution,323

they consist of hyper-squares, with the number of these being equal to the dimension. The modform region for324
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combined TD and BU has a more intricate polyhedral shape and is more constrained (Fig.5), at least for the structured325

distribution that mimics what might be found in reality [5]. This kind of polyhedral shape is important because it has326

more degrees of freedom that carry potential information about the modform distribution.327

We conclude that the LP methods developed here, while offering a coarse approximation to the modform distribu-328

tion itself, nevertheless provide useful information about the shape of the modform region.329

This brings us to the critical question of how these methods can be deployed in practice, on real data. This raises330

two kinds of problems. First, it is necessary for different kinds of dataset to be calibrated with each other. Protocols331

for undertaking such calibration are being developed. Second, and more intractable, is that there is no independent332

method for determining the modform distribution. Once data become available, we can apply the methods described333

here to determine a modform region but how can we know that the actual modform distribution lies within it? The334

polyhedral shape of the regions offers a potential answer to this conundrum. We may not know where the modform335

distribution lies but we can ask whether perturbations to the modform distribution give rise to correlated changes in the336

modform region. The experiments necessary to test such correlations will be easier to undertake in vitro, by titrating337

the levels of modification or demodification enzymes [5]. (Similar perturbations can be carried out in vivo but may338

have unpredictable effects through indirect or feedback connections within the network of enzymes.) The effect of339

such perturbations on the modform distribution can be reasonably well predicted and the consequent impact on the340

modform region calculated. If that change is seen in the data, it would confirm that the shape of the modform region is341

acting as a proxy for the modform distribution. Such experimental tests are the next step towards practical exploitation342

of modform regions and the LP algorithms introduced here.343
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10 20 30 40 50
MAAAAAAGAG PEMVRGQVFD VGPRYTNLSY IGEGAYGMVC SAYDNVNKVR

60 70 80 90 100
VAIKKISPFE HQTYCQRTLR EIKILLRFRH ENIIGINDII RAPTIEQMKD

110 120 130 140 150
VYIVQDLMET DLYKLLKTQH LSNDHICYFL YQILRGLKYI HSANVLHRDL

160 170 180 190 200
KPSNLLLNTT CDLKICDFGL ARVADPDHDH TGFLTEYVAT RWYRAPEIML

210 220 230 240 250
NSKGYTKSID IWSVGCILAE MLSNRPIFPG KHYLDQLNHI LGILGSPSQE

260 270 280 290 300
DLNCIINLKA RNYLLSLPHK NKVPWNRLFP NADSKALDLL DKMLTFNPHK

310 320 330 340 350
RIEVEQALAH PYLEQYYDPS DEPIAEAPFK FDMELDDLPK EKLKELIFEE

360
TARFQPGYRS

Table 1: MAPK1 amino-acid sequence for UniProt P28482. The seven phosphorylatable residues annotated in UniProt
and used in this study are shown in blue.
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1 0 61 S28P.Y186P.S245P 121 S28P.T184P.Y186P.T189P.S245P.S247P
2 T189P 62 Y186P.S245P.S283P 122 T184P.Y186P.T189P.S245P.S247P.S283P
3 S247P 63 S28P.S245P.S283P 123 S28P.T184P.T189P.S245P.S247P.S283P
4 T184P 64 S28P.Y186P.S283P 124 S28P.T184P.Y186P.T189P.S247P.S283P
5 S245P 65 T184P.T189P.S245P.S247P 125 S28P.Y186P.T189P.S245P.S247P.S283P
6 Y186P 66 T184P.Y186P.T189P.S247P 126 S28P.T184P.Y186P.T189P.S245P.S283P
7 S28P 67 S28P.T184P.T189P.S247P 127 S28P.T184P.Y186P.S245P.S247P.S283P
8 S283P 68 T184P.T189P.S247P.S283P 128 S28P.T184P.Y186P.T189P.S245P.S247P.S283P
9 T189P.S247P 69 Y186P.T189P.S245P.S247P
10 T184P.T189P 70 S28P.T189P.S245P.S247P
11 T189P.S245P 71 T189P.S245P.S247P.S283P
12 Y186P.T189P 72 S28P.Y186P.T189P.S247P
13 S28P.T189P 73 Y186P.T189P.S247P.S283P
14 T189P.S283P 74 S28P.T189P.S247P.S283P
15 T184P.S247P 75 T184P.Y186P.T189P.S245P
16 S245P.S247P 76 S28P.T184P.T189P.S245P
17 Y186P.S247P 77 T184P.T189P.S245P.S283P
18 S28P.S247P 78 S28P.T184P.Y186P.T189P
19 S247P.S283P 79 T184P.Y186P.T189P.S283P
20 T184P.S245P 80 S28P.T184P.T189P.S283P
21 T184P.Y186P 81 S28P.Y186P.T189P.S245P
22 S28P.T184P 82 Y186P.T189P.S245P.S283P
23 T184P.S283P 83 S28P.T189P.S245P.S283P
24 Y186P.S245P 84 S28P.Y186P.T189P.S283P
25 S28P.S245P 85 T184P.Y186P.S245P.S247P
26 S245P.S283P 86 S28P.T184P.S245P.S247P
27 S28P.Y186P 87 T184P.S245P.S247P.S283P
28 Y186P.S283P 88 S28P.T184P.Y186P.S247P
29 S28P.S283P 89 T184P.Y186P.S247P.S283P
30 T184P.T189P.S247P 90 S28P.T184P.S247P.S283P
31 T189P.S245P.S247P 91 S28P.Y186P.S245P.S247P
32 Y186P.T189P.S247P 92 Y186P.S245P.S247P.S283P
33 S28P.T189P.S247P 93 S28P.S245P.S247P.S283P
34 T189P.S247P.S283P 94 S28P.Y186P.S247P.S283P
35 T184P.T189P.S245P 95 S28P.T184P.Y186P.S245P
36 T184P.Y186P.T189P 96 T184P.Y186P.S245P.S283P
37 S28P.T184P.T189P 97 S28P.T184P.S245P.S283P
38 T184P.T189P.S283P 98 S28P.T184P.Y186P.S283P
39 Y186P.T189P.S245P 99 S28P.Y186P.S245P.S283P
40 S28P.T189P.S245P 100 T184P.Y186P.T189P.S245P.S247P
41 T189P.S245P.S283P 101 S28P.T184P.T189P.S245P.S247P
42 S28P.Y186P.T189P 102 T184P.T189P.S245P.S247P.S283P
43 Y186P.T189P.S283P 103 S28P.T184P.Y186P.T189P.S247P
44 S28P.T189P.S283P 104 T184P.Y186P.T189P.S247P.S283P
45 T184P.S245P.S247P 105 S28P.T184P.T189P.S247P.S283P
46 T184P.Y186P.S247P 106 S28P.Y186P.T189P.S245P.S247P
47 S28P.T184P.S247P 107 Y186P.T189P.S245P.S247P.S283P
48 T184P.S247P.S283P 108 S28P.T189P.S245P.S247P.S283P
49 Y186P.S245P.S247P 109 S28P.Y186P.T189P.S247P.S283P
50 S28P.S245P.S247P 110 S28P.T184P.Y186P.T189P.S245P
51 S245P.S247P.S283P 111 T184P.Y186P.T189P.S245P.S283P
52 S28P.Y186P.S247P 112 S28P.T184P.T189P.S245P.S283P
53 Y186P.S247P.S283P 113 S28P.T184P.Y186P.T189P.S283P
54 S28P.S247P.S283P 114 S28P.Y186P.T189P.S245P.S283P
55 T184P.Y186P.S245P 115 S28P.T184P.Y186P.S245P.S247P
56 S28P.T184P.S245P 116 T184P.Y186P.S245P.S247P.S283P
57 T184P.S245P.S283P 117 S28P.T184P.S245P.S247P.S283P
58 S28P.T184P.Y186P 118 S28P.T184P.Y186P.S247P.S283P
59 T184P.Y186P.S283P 119 S28P.Y186P.S245P.S247P.S283P
60 S28P.T184P.S283P 120 S28P.T184P.Y186P.S245P.S283P

Table 2: Indices and modforms for the MAPK1 example. Indices are chosen internally by modformPRO.
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Figure 1: Modforms, distributions and regions. A hypothetical modform distribution is shown as a histogram (left).
The protein has 3 types of PTM (blue, magenta, green) at 4 sites, giving 16 modforms in total. The modform dis-
tribution can also be viewed as a point (X) in a sixteen-dimensional space (right), where only the three dimensions
corresponding to modforms 6, 11 and 14 are shown. Mass-spectrometry data give rise to linear equations which
constrain the modform distribution to lie within a modform region (box).
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Figure 2: Modform range determination by linear programming (LP). The modform region (black segment) of the
linear system given by Eq.7 is shown, in the space of modforms 7 and 11. The ranges obtained by solving the LP
problem in Eq.9 gives the same result as if the modform region were the “hyper-square” with magenta dashes.
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Figure 3: modformPRO output for the structured distribution. The modforms corresponding to the indices are shown
in Table 2. Red crosses mark the actual values of the modform distribution; blue bars show the range estimated by LP
from Eq.9; yellow discs mark the midpoint of each range. The average range is calculated over all 128 modforms.
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Figure 4: modformPRO output for the random distribution, following the same conventions as in Fig.3. Because of
the way weights were chosen for this distribution, as explained in the text, the normalised values (red crosses) must
each be below 0.8.
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Figure 5: Histogram showing the frequency of hyper-square dimensions arising from combined TD and BU MS, deter-
mined from the range estimations for the structured distribution (Fig.3 bottom plot, cyan) and the random distribution
(Fig.4 bottom plot, magenta).
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