
Medical Image Analysis 47 (2018) 140–152 

Contents lists available at ScienceDirect 

Medical Image Analysis 

journal homepage: www.elsevier.com/locate/media 

A probabilistic approach to joint cell tracking and segmentation in 

high-throughput microscopy videos 

� 

Assaf Arbelle 

a , b , Jose Reyes c , Jia-Yun Chen 

c , Galit Lahav 

c , Tammy Riklin Raviv 

a , b , ∗

a Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Israel 
b The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Israel 
c Department of Systems Biology, Harvard Medical School, USA 

a r t i c l e i n f o 

Article history: 

Received 19 January 2017 

Revised 12 April 2018 

Accepted 19 April 2018 

Available online 22 April 2018 

Keywords: 

Tracking 

Segmentation 

Joint 

Cell 

Microscopy 

Multiple object 

Fast marching 

a b s t r a c t 

We present a novel computational framework for the analysis of high-throughput microscopy videos of 

living cells. The proposed framework is generally useful and can be applied to different datasets acquired 

in a variety of laboratory settings. This is accomplished by tying together two fundamental aspects of cell 

lineage construction, namely cell segmentation and tracking, via a Bayesian inference of dynamic models. 

In contrast to most existing approaches, which aim to be general, no assumption of cell shape is made. 

Spatial, temporal, and cross-sectional variation of the analysed data are accommodated by two key contri- 

butions. First, time series analysis is exploited to estimate the temporal cell shape uncertainty in addition 

to cell trajectory. Second, a fast marching (FM) algorithm is used to integrate the inferred cell properties 

with the observed image measurements in order to obtain image likelihood for cell segmentation, and 

association. The proposed approach has been tested on eight different time-lapse microscopy data sets, 

some of which are high-throughput, demonstrating promising results for the detection, segmentation and 

association of planar cells. Our results surpass the state of the art for the Fluo-C2DL-MSC data set of the 

Cell Tracking Challenge (Maška et al., 2014). 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Thanks to advances in automation, thousands of cell popula-

tions can be perturbed and recorded by an automated microscope,

making live cell imaging a widespread and versatile platform for

quantitative analysis of cellular processes. Nevertheless, the pace of

modern imaging far outstrips the capability of biologists to manu-

ally analyse the resulting movies. Automated image processing can

extract a richness of quantitative measures far beyond what a hu-

man can observe. Yet, to fully exploit the power of live-cell imag-

ing, a spatiotemporal tracing of multiple cells in a dynamic envi-

ronment is required. To address this challenge for large data sets,

numerous cell tracking algorithms have been developed and have

become a focus in the bioengineering community ( Maška et al.,

2014; Ulman et al., 2017 ). While many tracking and detection algo-

rithms for specific experimental setups exist, the construction of a

generally applicable tool for a variety of datasets, without exhaus-

tive training, remains a challenge. We hereby present an unsuper-
� Conflict of interest: We wish to confirm that there are no known conflicts of 

interest associated with this publication and there has been no significant financial 

support for this work that could have influenced its outcome. 
∗ Corresponding author. 
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ised approach for joint cell segmentation and tracking that allows

utomatic and systematic extraction of quantitative measurements

hat can be applicable to different experimental situations. 

Spatiotemporal tracing is often considered as two sequential

roblems: the spatial definition of the cells within the frame, i.e.,

egmentation, and the temporal frame to frame association, i.e.,

racking. There are numerous approaches that address the segmen-

ation problem in general and that of live cell imaging in particu-

ar. The majority of these methods rely on low level image features,

uch as pixel intensities and gradients, to separate cells from back-

round and to distinguish between the different cells. This could

e done by different algorithms ranging from basic methods such

s adaptive thresholding ( Padmanabhan et al., 2010; Otsu, 1975 )

o more sophisticated methods, such as deformable models and

ctive contours ( Chan and Vese, 2001; Osher and Sethian, 1988 ).

or example, the Active Mesh ( Dufour et al., 2011 ) approach allows

he users to utilize computer graphics models to find accurate seg-

entation with low computational power. Watershed transforma-

ion introduced by Beucher and Meyer (1992) is widely used for

ell segmentation e.g., Wählby et al. (2004) . The graph-cut method

 Boykov and Funka-Lea, 2006 ), common in natural image process-

ng has also been applied to microscopy images e.g., Bensch and

onneberger (2015) . 

https://doi.org/10.1016/j.media.2018.04.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2018.04.006&domain=pdf
mailto:rrtammy@ee.bgu.ac.il
https://doi.org/10.1016/j.media.2018.04.006
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In most cases relying on low level image features alone is in-

ufficient for the segmentation task. Prior knowledge adds orthog-

nal information and can improve the overall result. An interest-

ng model-driven approach suggested by Kanade et al. (2011) and

u et al. (2013) incorporates the physical properties of the mi-

roscope within the segmentation. Machine learning methods

hat aim to be general and not specific to acquisition con-

itions or modality, require training data, usually obtained by

anual annotations. For example, Ilastik ( Sommer et al., 2011 )

 a commonly used interactive tool for cell segmentation, is

ased on the Random Forest classifier ( Breiman, 2001 ), and is

rained by labeled pixels provided by the user annotation. In

onneberger et al. (2015) a deep artificial neural network (U-Net)

s presented for segmentation. The classification deep neural net-

ork in Kraus et al. (2016) utilizes the Jacobian maps for cell seg-

entation. While these Deep Learning methods and Ilastik provide

ccurate segmentation results they require a comprehensive set of

nnotated examples. 

Provided that the segmentation problem is well-posed, cell-

o-cell association is commonly approached by finding correspon-

ences between cell features in consecutive frames. Cell associa-

ion becomes complicated when the feature similarity of a cell to

ts within-frame neighbors is comparable to the similarity of the

ame cell in consecutive frames. When cells cannot be easily dis-

inguished, a more elaborate cell matching criterion is needed, for

xample, considering cell dynamics ( Yang et al., 2006 ), solving sub-

ptimal frame-to-frame assignment problems, via linear and inte-

er programming optimization ( Kachouie and Fieguth, 2007 ) and

ts expansion to global cell association ( Türetken et al., 2016; 2017;

ise et al., 2011 ), or by using multiple hypothesis testing (MHT)

 Reid, 1979 ) and its relaxation ( Jaqaman et al., 2008 ). Common re-

ent approaches, in this spirit, to address the cell tracking problem

re based on graphical models. The key idea is the construction of

 graph, in the spatial and/or time domain, of possible hypothe-

es and using it to find the globally optimal solution ( Jaiswal et al.,

016; Akram et al., 2016; Schiegg et al., 2013; Magnusson et al.,

015; Padfield et al., 2011 ). 

Often an accurate delineation of cell boundaries is a challeng-

ng task. A high degree of fidelity is required for cell segmenta-

ion, even in instances where the cells are far apart and hence

an be easily distinguished. Moreover, in many cases the extracted

ellular features (e.g., shape or intensity profile) are also the in-

ended subject of the biological experiment. Therefore, several re-

ent methods attempt to support segmentation through solving

he cell association problem and thus extract prior information

rom previous frames. For example, the initial cell boundaries in

he active contour framework can be derived from the contours of

he associated cells in the previous frame as long as cell position

s relatively stable ( Bergeest and Rohr, 2012; Dufour et al., 2005;

ang and Chung, 2007; Zimmer et al., 2002; Dzyubachyk et al.,

010 ). An alternative active contour strategy is to segment a se-

ies of time-lapse images as a 3D volume ( Padfield et al., 2008 ).

i et al. (2008) incorporate multiple modules including cell mo-

ion prediction and active contours to simultaneously perform seg-

entation and data association. More recent methods successfully

eal with complex data sets using probabilistic frameworks. In the

raphical model suggested by Schiegg et al. (2014) cell segments

re merged by solving multiple hypothesis testing subject to inter-

rame and intra-frame constraints. The Gaussian mixture model

roposed by Amat et al. (2014) is based on the propagation of cell

entroids and their approximated Gaussian shape to the following

rame in order to combine super-voxels into complete cell regions.

In this paper, cell tracking and segmentation are jointly solved

ia two inter- twined estimators. The first is the motion estima-

ion filter, inspired by the Kalman Filter. The second is maximum a

osteriori probability (MAP) of a pixel belonging to a cell. Consider
ig. 1 showing an example of two consecutive frames at times

 and t+1. The segmentation of the cell at time t (red) may not

atch the true segmentation at time t+1 due to the cell’s dynam-

cs. Translation of the contour in frame t by using cell motion esti-

ation (magenta) allows better alignment. The final cell segmenta-

ion (green) can be calculated based both on the estimated contour

nd frame t+1. 

One of the key ideas is the extension of the commonly-used

alman state vector to account for shape fluctuations for dynamic

hape modeling (DSM). Shape inference requires a probabilistic

odeling of cell morphology, which is not mathematically triv-

al. We address this challenge by applying a sigmoid function to

he signed distance function (SDF) of the cell boundaries such that

he slope of the sigmoid models the shape uncertainty and defines

 prior probability for each cell. Given the estimated cell poses,

hape models and velocity maps, that are generated from the ob-

erved image measurements, we calculate the likelihood maps of

ach cell via a fast marching (FM) algorithm. Using the prior prob-

bilities and the likelihood maps, we calculate the posterior prob-

bilities of the image pixels. The partitioning of the image into in-

ividual cells and background is defined by the MAP estimates. 

The proposed method is mathematically elegant and robust,

ith just a few parameters to tune. The algorithm has numer-

us advantages. A main contribution is the DSM, which serves as

 prior for the consecutive frame segmentation without imposing

ny predetermined assumptions on cell shape. In contrast to exist-

ng approaches ( Türetken et al., 2017; Amat et al., 2014; Türetken

t al., 2016 ), which explicitly or implicitly assume ellipsoidal struc-

ure, the proposed algorithm can handle non-convex cell shapes.

onsider for example the cells’ shapes in Fig. 5 , which exhibit sig-

ificant irregularities. Furthermore, introducing the boundary un-

ertainty estimate to the shape model makes our algorithm robust

gainst temporal, morphological fluctuations. In addition, estimat-

ng the cell temporal dynamics facilitates accurate frame-to-frame

ssociation, particularly in the presence of highly cluttered assays,

apid cell movements, or sequences with low frame rate. We note

hat mitotic events (i.e., cell divisions) significantly complicate cell

racking. We address this issue by initiating tracks for the daughter

ells based on the MAP segmentation. 

We demonstrate the proposed method both quantitatively and

ualitatively on several data sets of different cell types acquired

n a variety of laboratory and imaging settings including the Cell

racking Challenge ( Maška et al., 2014 ). The results show that

he method is capable of robustly handling both segmentation of

ells with irregular shapes and tracking of long sequences (hun-

reds of frames). We note that for the Cell Tracking Challenge -

luo-C2DL-MSC data set, our method was ranked the first in all

hree categories (Tracking, Segmentation, and combined score) by

he challenge organizers www.codesolorzano.com/Challenges/CTC/ 

atest _ Results.html . 

The code is freely available at https://github.com/

rbellea/CellTrackingAnd SegmentationPublic.git and a com- 

iled version is available at https://github.com /arbellea/

ellTrackingAndSegmentationCompiled.git . Access to the RPE 

ata set will be given upon request. The current version of the

ode is implemented for 2D data sets. 

This paper is an extension of our preliminary work

rbelle et al. (2015) with a more general mathematical for-

ulation and a variety of challenging data sets. 

The rest of the paper is organized as follows. In Section 2 we

ntroduce the proposed cell tracking and segmentation approach,

hich consists of four main components: Section 2.3 discusses

he time series analysis for motion and shape uncertainty esti-

ation; Section 2.4 defines the probabilistic DSM based on previ-

us frame segmentation and the estimated boundary uncertainty;

ection 2.5 utilizes the FM algorithm for the calculation of the like-

http://www.codesolorzano.com/Challenges/CTC/Latest_Results.html
https://github.com/arbellea/CellTrackingAndSegmentationPublic.git
https://github.com/arbellea/CellTrackingAndSegmentationPublic.git
https://github.com/arbellea/CellTrackingAndSegmentationCompiled.git
https://github.com/arbellea/CellTrackingAndSegmentationCompiled.git
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Fig. 1. Frame to frame association and segmentation: An example of two consecutive frames at times t and t+1. The segmentation of the cell at time t (red) may not match 

the true segmentation at time t+1 due to the cell’s dynamics. Translation of the contour, from frame t, by using cell motion estimation (magenta) allows better alignment. 

The final cell segmentation (green) can be calculated based both on the estimated contour and frame t+1. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Graphical model associated with the proposed algorithm. Shaded circles 

represent the observed variables I t−1 , I t and I t+1 . The non-shaded circles represent 

the unknown variables: cell segmentations �t and cell state vectors ξt . The dashed 

line connecting �t−1 and �t (as well as �t−1 and �t+1 ) indicates that �t−1 ( �t ), 

which is estimated in the previous frame, is no longer considered an unknown ran- 

dom variable. 
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lihood; Section 2.6 presents the MAP estimation of the final seg-

mentation and association. Section 3 presents experimental results

for eight different datasets. We conclude and outline future direc-

tions in Section 4 . 

2. Methods 

2.1. Problem formulation 

In the following section, we aim to define the association and

segmentation process by partitioning the image to a labeled set

such that each cell has a unique label for the duration of the en-

tire sequence. Let C = 

{
C ( 1 ) , . . . , C ( K ) 

}
denote K cells in a time lapse

microscopy sequence, containing T frames. We define � ⊂ R 

2 as

the image domain. Let I : � → R be a random variable with prob-

ability function P I . Let I t be the observed values of t -th frame in

that sequence, t = 1 , . . . , T . We assume that each I t is a gray-level

image of K t cells, that form a subset of C. Our objective is twofold

and consists of both cell segmentation and frame-to-frame cell as-

sociation defined as follows: 

Segmentation : For every frame I t , find a function f t : �→ L t ,

(where L t is a subset of K t + 1 integers in [ 0 , . . . , K ] ) that assigns

a label l t ∈ L t to each pixel x = [ x, y ] ∈ �. The function f t partitions

the t ’th frame into K t regions, where each segment correspond-

ing to a cell �( k ) 
t = { x ∈ �| f t ( x ) = l t = k } forms a connected com-

ponent of pixels, in frame t .The background, i.e., �( 0 ) 
t , includes all

non-cell pixels and is not limited to a single connected component.

Note that 
⋃ K t 

k =0 
�( k ) 

t = � and �( i ) 
t ∩ �( j ) 

t = 0 , ∀ i � = j. 

Association: For every frame I t , find an injective function h t :

L t−1 → L t that corresponds to cell segments in frame t − 1 and

frame t . As we will show in the following, the segmentation and

association steps are merged and �(k ) 
t , k ≥ 1 defines the segmenta-

tion of cell C ( k ) in frame t . We assume that each cell is represented

by a state vector ξ ( k ) 
t (including the location, velocity, and shape

uncertainty of the cell). 

2.2. Probabilistic model 

The proposed method for joint cell segmentation and associ-

ation is based on a graphical model presented in Fig. 2 . Shaded

circles represent the observed variables I t−1 , I t and I t+1 . The non-

shaded circles represent the unknown variables: cell segmenta-

tions �t = { �( k ) 
t } K t 

k =0 
and cell state vectors ξt = { ξ ( k ) 

t } K t 
k =0 

. Given a

sequence of microscopy videos as input, the proposed algorithm’s
utput is the segmented sequence, where each cell is assigned a

nique label. Our goal is to find the partitioning �t given I t and

nformation from previous frames. We do not require cell shape to

e elliptical or otherwise convex. Our only assumption, related to

ell topology, is that its segmentation, i.e., �( k ) 
t is represented as a

ingle connected component. Fig. 3 presents the flow of the pro-

osed algorithm, to be detailed below, using a single representa-

ive cell. For every cell C ( k ) there exist a number of properties that

escribe its state at a given time t . Let ξ ( k ) 
t ∈ R 

F , Eq. (1) , denote

he hidden state vector that holds the true, unknown, state of the

ell comprised of F features. In our case the state vector holds the

ollowing features: 

( k ) 
t = 

[ 
c ( 

k ) 
x t , c ( 

k ) 
y t , v ( k ) x t , v ( k ) y t , ε( k ) 

t 

] T 
= 

[ 
c ( 

k ) T 
t , v ( 

k ) T 
t , ε( k ) 

t 

] T 
(1)

here, c ( k ) t = [ c ( 
k ) 

x t 
, c ( 

k ) 
y t 

] T denote the center of mass(COM) of the

ell at time t and v ( k ) t = [ v ( k ) x t 
, v ( k ) y t 

] T denote the COM velocities. In

ddition, the commonly used state vector is extended to include

 shape uncertainty variable, denoted by ε( k ) 
t , which will be ex-

lained in Section 2.4 . We note that although we deal with pla-

ar cells, the extension to 3D is straightforward and only requires

daptation of the state-vector, e.g., using 3D coordinates for the

alculation of cell COM and velocity. In the following we present

he probabilistic modelling for the assignment of a specific pixel

o a specific cell. Although each pixel is treated independently, the
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Fig. 3. Segmentation flow of a specific cell. (a) Original image. The estimated COM of the specific cell k is marked by a red cross. (b) DSM (Spatial prior probability). (c) 

Intensity probability of the foreground P ( 
FG ) 

t . (d) Traversability image g ( ∇ x I t ). (e) Speed image ˆ S ( 
k ) 

t | t −1 
, the pr oduct of (c-d). (f) FM distance. (g) Likelihood. (h) Posterior. (i) 

MAP-based labeled segmentation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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patial relations are indirectly introduced into the prior and likeli-

ood as will be explained in Sections 2.4 and 2.5 respectively. Let
( k ) 
t| t ( x ) denote the probability of x ∈ �( k ) 

t given the current frame

nd all relevant information from previous frames: 

( k ) 
t| t ( x ) = P 

(
x ∈ �( k ) 

t | I t , �0 , ξ0 , . . . , �t−1 , ξt−1 

)
= P 

(
x ∈ �( k ) 

t | I t , �t−1 , ξt−1 

)
. (2) 

Note the subscript t | t implies that the current time step and

istory are taken into account. Using Bayes theorem we get: 

 

(
x ∈ �( k ) 

t | I t , �t−1 , ξt−1 

)

= 

P 

(
I t | x ∈ �( k ) 

t , �t−1 , ξt−1 

)
P 

(
x ∈ �( k ) 

t | �t−1 , ξt−1 

)
P 
(
I t | �t−1 , ξt−1 

) . (3) 
e denote the prior probability that x ∈ �( k ) 
t given only history

ith the subscript t| t − 1 : 

( k ) 
t | t −1 ( x ) = P 

(
x ∈ �( k ) 

t | �t−1 , ξt−1 

)
(4) 

ere, we assume that �t−1 , that was estimated from the previous

rame, is known and is no longer considered an unknown random

ariable. The image likelihood is denoted by: 

 t| t ( x ) = P 

(
I t | x ∈ �( k ) 

t , �t−1 , ξt−1 

)
= P 

(
I t | x ∈ �( k ) 

t 

)
(5) 

ince P 
(
I t | �t−1 , ξt−1 

)
is not a function of k or x we refer to it as a

ormalization constant: 

= 

1 

P 
(
I t | �t−1 , ξt−1 

) (6) 

ubstituting Eqs. (4) –(6) into Eq. (3) we get a compact notation: 

( k ) 
t| t ( x ) = β�( k ) 

t | t −1 ( x ) L t| t ( x ) (7) 
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The final segmentation is then defined by the maximum a posteri-

ori estimator (MAP): 

L t ( x ) = arg max 
k ∈K t 

(
�( k ) 

t| t ( x ) 

)
= arg max 

k ∈K t 

(
φ( k ) 

t | t −1 ( x ) L t| t ( x ) 

)
(8)

and the partitioning is given by: 

ˆ �( k ) 
t = { x |L t ( x ) = k } (9)

2.3. Time series analysis 

In the following discussion the superscript ( k ) is removed for

clarity. Let Q t ∈ R 

F ×F , R t ∈ R 

O ×F be known covariance matrices and

w t , r t ∈ R 

F be random variables drawn from N ( 0 , Q t ) and N ( 0 , R t ) ,

respectively. We refer to w t and r t as the process noise and mea-

surement noise, respectively. Let A ∈ R 

F ×F denote the state transi-

tion model. We assume that the state vector approximately follows

a linear time step evolution: 

ξt = A ξt−1 + w t (10)

In order to predict the state of a cell at time t we adopt the equa-

tions of the Kalman Filter ( Kalman, 1960 ). The predicted (a priori)

state vector estimation and error covariance matrix at time t given

measurements up to time t − 1 are: 

ˆ ξt | t −1 = A ̂

 ξt −1 | t −1 


t | t −1 = A
t −1 | t −1 A 

T + Q t (11)

Fig. 3 (a) shows an estimation of the COM component of ˆ ξt | t −1 su-

perimposed on I t marked by a red cross. The estimated segmenta-

tion of a cell C ( k ) in frame t , i.e., ˆ �( k ) 
t | t −1 

is obtained by a translation

of the cell segmentation in frame t − 1 : ̂  �( k ) 
t | t −1 

= { x | (x − ˆ v ( 
k ) 

t | t −1 
dt) ∈

�( k ) 
t−1 

} , where ˆ v ( 
k ) 

t | t −1 
dt is the estimated cell displacement. The im-

portance of the cell displacement estimation is illustrated in Fig. 1 .

Since the true state is hidden, the observed state ζ t ∈ R O , where O

is the number of observed variables and B ∈ R O × F is the observa-

tion matrix, is modeled as: 

ζt = B ξt + r t (12)

The state of the cell, ζ t , is calculated once the segmentation is

complete ( Section 2.6 ). This includes the measured COM and εt ,

which also requires the segmentation of the previous frame. 

Let G t = 
t | t −1 B 

T (B
t | t −1 B 

T + R t ) 
−1 define the Kalman Gain

matrix. The a posteriori state estimate and error covariance matrix

at time t given measurements up to and including time t are: 

ˆ ξt| t = A ̂

 ξt | t −1 + G t (ζt − B ̂

 ξt | t −1 ) 


t| t = (I − G t B)
t | t −1 (13)

2.4. Prior probability - Dynamic shape model (DSM) 

The main concepts of the DSM are illustrated in Fig. 4 . Let
ˆ φ( k ) 

t | t −1 
: � → R define the signed distance function (SDF) and is

constructed as follows: 

ˆ φ( k ) 
t | t −1 ( x ) = 

{ 

min 

x ′ ∈ ∂ ̂ �( k ) 
t | t −1 

d E (x , x 

′ ) x ∈ 

ˆ �( k ) 
t | t −1 

− min 

x ′ ∈ ∂ ̂ �( k ) 
t | t −1 

d E (x , x 

′ ) x / ∈ 

ˆ �( k ) 
t | t −1 

(14)

where d E ( · , · ) denotes the Euclidian distance and ∂ ̂  �t | t −1 deno tes

the estimated segmentation boundary. Fig. 4 (a) shows two pairs of

contours with different shape variations. The top cell varies greatly

while the bottom does not. Fig. 4 (b) is an overlap of the two con-

tours. Fig. 4 (c), visualizes the SDF relative to the contour at time t .

In the spirit of ( Riklin-Raviv et al., 2010; Pohl et al., 2006; Bishop,
006 ) we define the probability that a pixel x belongs to the do-

ain of cell k by the logistic regression function: 

ˆ (k ) 
t | t −1 

(x ) = P (x ∈ �(k ) 
t | �t−1 , ξt−1 ) � 

(
1 + exp 

(
−

ˆ φ(k ) 
t | t −1 

(x ) 

ˆ ε(k ) 
t | t −1 

))−1 

(15)

here, ˆ ε( k ) 
t | t −1 

is the estimation of ε( k ) 
t , which determines the slope

f the logistic sigmoid. The slope should be indicative of the un-

ertainty of the k -th cell outline; however, as this value cannot

e calculated, we set ε( k ) 
t to be proportional to the difference be-

ween the boundaries of the cell in two consecutive frames, (refer

o the pink region in Fig. 4 (b)). We chose to measure this differ-

nce using the Modified Hausdorff Distance (MHD) ( Dubuisson and

ain, 1994 ), denoted by d MHD ( · ). Recall that the d MHD ( · ) of two sets

 and Y of cardinality N X and N Y , respectively, is defined as: 

 MHD (X , Y)= 

1 

2 

(
1 

N X 

∑ 

x ∈X 
min 

y ∈Y 
( ‖ 

x − y ‖ 2 ) + 

1 

N Y 

∑ 

y ∈Y 
min 

x ∈X 
( ‖ 

x − y ‖ 2 ) 
)
, 

(16)

here ‖ · ‖ 2 denotes the L 2 norm. We can equivalently consider

he expression in Eq. (15) as the zero-mean cumulative distribu-

ion function of the logistic distribution, where ε( k ) 
t is proportional

o the standard deviation. We therefore set ε( k ) 
t as follows: 

( k ) 
t � d MHD 

(
∂ �( k ) 

t−1 
, ∂ �( k ) 

t 

)√ 

3 

2 π
(17)

ote, as can be seen in Fig. 4 (d) and (e), large temporal shape fluc-

uations increase d MHD , which in turn increases the slope of the

ogistic regression function and the uncertainty in cell boundaries.

urther explanation of the choice of ε( k ) 
t is available in Appendix A .

q. (15) defines the proposed DSM, which is the prior probability

hat a pixel belongs to the cell. Fig. 3 (b) shows an example of a

rior probability , ˆ �( k ) 
t | t −1 

, for a given cell. 

.5. Likelihood 

We now present the calculation of the Likelihood of the pro-

osed segmentation algorithm given the state vector estimation
ˆ 
t | t −1 and cell segmentation of the previous frame. The modeling

f cell (foreground) and background intensity distributions, ˆ f F G ( ·)
nd 

ˆ f BG ( ·) , respectively, can be done via several different methods.

e suggest either using Gaussian Mixture Model (GMM) as long as

he data fits the GMM assumptions (as proposed by Arbelle et al.,

015 ) or in more complicated cases, when the underlying PDF is

nknown, the Kernel Density Estimation (KDE) ( Rosenblatt et al.,

956; Parzen, 1962 ) can be applied. 

The intensity-based probability of being a cell or background

 Fig. 3 (c)) is defined using the estimated PDFs as follows: 

 

( BG ) 
t ( x ) = 

α ˆ f BG ( I t ( x ) ) 

α ˆ f BG ( I t ( x ) ) + ( 1 − α) ̂  f F G ( I t ( x ) ) 
; P ( 

F G ) 
t ( x ) =1 −P ( 

BG ) 
t ( x ) 

(18)

here 0 < α < 1 is a predetermined weight. The robustness of the

arameter α is examined in Appendix B . 

We use the FM algorithm ( Hassouna and Farag, 2007 ) to find

he shortest path from each pixel x to the estimated COM of

 cell k s.t. a speed image ˆ S ( 
k ) 

t | t −1 
: � → [ 0 , 1 ] . The FM distance,

 F M 

(x , ̂  c ( 
k ) 

t | t −1 
| ̂  S ( 

k ) 
t | t −1 

) , is the minimal geodesic distance from x to

ˆ  ( 
k ) 

t | t −1 
. In other words, the value of ˆ S ( 

k ) 
t | t −1 

( x ) is the speed of a

ixel x along the shortest path to ˆ c ( 
k ) 

t | t −1 
. For each pixel x in
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Fig. 4. DSM construction from two consecutive instances of a cell. Each row refers to a different cell. (a) Raw data depicting two instances of the same cell in frames 

t − 1 and t . (b) The associated contours of the two instances (red and light blue) superimposed. The area of mismatch (pink) corresponds to ε. Note that ε is larger (upper 

row) in the presence of significant shape fluctuations. (c) The signed distance function (SDF) associated with the cell instance in frame t . The SDF’s zero level is defined by 

the cell’s contour (light blue). (d) A logistic regression function 1 / (1 + exp(− SDF 
ε )) . (e) The DSM, which represents the cell’s probability map. The smoother function of the 

cell shape in the upper row reflects high uncertainty. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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Table 1 

Manual annotation: The percentage of manually annotated cells (within the 

first two frames) with respect to the total number of cells detected by the 

proposed method in the entire sequence. 

Data # Man. # Total Percentage # Frames 

Annotated Detected 

Fluo-C2DL-MSC 24 767 3.13% 48 

Fluo-N2DH-SIM + 60 5167 1.16% 110 

Fluo-N2DH-GOWT1 64 2987 2.14% 92 

H1299 84 3623 2.31% 72 

MCF-10A 84 8009 1.05% 141 

RPE 56 180,881 0.31% 400 
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rame t we define its speed 

ˆ S ( 
k ) 

t | t −1 
( x ) as the product of two terms:

. The intensity-based probability of belonging to the foreground

 Eq. (18) ). 2. The “traversability” ( Fig. 3 (d)), which is in inverse pro-

ortion to the image edges in frame I t , is defined by g ( | ∇ x I t | ) =
(1 + 

| ∇ x I t | 
σgrad 

) −2 where | ∇ x I t | = 

√ 

( ∂ 
∂ x 

I t ) 2 + ( ∂ 
∂ x 

I t ) 2 and σ grad is the

tandard deviation of all values in | ∇ x I t |. The speed is defined as:

ˆ 
 

( k ) 
t | t −1 

= log 
(
1 − P ( 

F G ) 
t · g ( | ∇ x I t | ) 

)
(19) 

he absolute value of the spatial gradient, i.e., | ∇ x I t |, can be in-

erpreted as “speed bumps” which make the “FM journey” more

ifficult across edges. An example of the speed image and the final

M distance can be seen in Fig. 3 (e) and (f), respectively. 

Let d F M 

(x , ̂  c ( 
k ) 

t | t −1 
| ̂  S ( 

k ) 
t | t −1 

, ) define the FM distance from every

ixel to the estimated cell center. The likelihood of x given C k 
 Fig. 3 (g)) can be defined as: 

 t| t ( C k | x ) = 

(
d F M 

(
x , ̂  c ( 

k ) 
t | t −1 

| ̂  S ( 
k ) 

t | t −1 
, 

)
+ 1 

)−1 

(20) 

ote that 0 ≤ L t | t ≤ 1 and that L t| t = 1 iff d F M 

= 0 . 

.6. MAP segmentation and association 

The Posterior Probability for each pixel to belong to a cell is

iven as the normalized product of the Prior ( Eq. (15) ) and the

ikelihood ( Eq. (20) ) as defined in Eq. (7) (see Fig. 3 (h)). The final

egmentation of the image is then given as the MAP estimation as

efined in Eq. (8) (see Fig. 3 (i)). In fact, we see that cell associa-

ion is inherent to the defined segmentation problem, since each

ell is segmented using its estimated properties from the previous

rame. Given the final segmentation, we calculate the state vector

t and apply the Kalman correction given in Eq. (13) to obtain the

stimated state vector of the current frame. Note that since the

easurements are dependent on the segmentation, the method is

imited to a forward pass on the sequence. 

.7. New track detection 

We look for new tracks once the MAP estimation is completed,

nd the image pixels are labelled. New cell tracks can be initiated
ither as a result of mitosis or entrance to the frame’s field of view

e refer to a mitotic event when two or more connected compo-

ents are associated with the same cell label. In which case the

rack of the mother cell is terminated and a new track is initiated

or each connected component. In addition we look for pixels that

ere labelled as background but satisfy: 

( New ) 
t = 

{
x | (x ∈ �( 0 ) 

t ) ∧ (P ( 
F G ) 

t ( x ) > 0 . 5) 
}

(21) 

 new cell is detected for each connected component in the region

xtracted with size within the range 
[
T min −cel l −size , T max −cel l −size 

]
. 

. Experimental results 

.1. Experimental setup 

nitialization . The first two frames of each data set were manu-

lly annotated using the initialization tool described in Appendix C ,

hich is made freely available. We, however, note that any other

tility may be used to create the initial segmentations, e.g., ImageJ

 Schindelin et al., 2015 ) or Ilastik ( Sommer et al., 2011 ). Table 1

hows the percentage of manually annotated cells with respect to

ach of the full length sequences. Note that the method requires

nnotation of the first two frames regardless of sequence length,

umber of cells, type of cells, or number of mitotic events. This

mounts to a very low percentage of the total number of cells

ithin the sequence, especially in long and dense data sets such

s the RPE set, where the manual annotations amount to 0.31%
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Fig. 5. Visual results. Selected frames presenting full views (odd rows) and zoom-in (even rows) of the results obtained for three of Cell Tracking Challenge data sets: 

Fluo-C2DL-MSC (rows 1–2), Fluo-N2DH-SIM+ (rows 3–4), and Fluo-N2DH-GOWT (rows 5–6). For links to full videos refer to Table 7 . 
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Algorithm 1 Pseudocode:. 

Require: Initial Segmentation of first two frames, 

1: for k ≤ K t=1 do 

2: Calculate the observed state vector for cell k , ζ (k ) 
t=1 

3: end for 

4: for 2 ≤ t ≤ T do 

5: for k ≤ K t do 

6: Estimate the Kalman state vector, ˆ ξ (k ) 
t | t −1 

giv en ξ (k ) 
t −1 | t −1 

as 

defined in Eq. (11) 

7: Calculate prior pixel probability (DSM), �t | t −1 (x | C k ) 
given 

ˆ ξ (k ) 
t as defined in Eq. (15) 

8: Calculate the likelihood, L t (C k | x ) given the frame I t and 

ˆ ξ (k ) 
t as defined in Eq. (20) 

9: Calculate posterior probabilities P t ( C k | x ) as defined in Eq. 

(7) 

10: Apply MAP estimator to get cell segmentation, �( k ) 
t as 

defined in Eq. (8) 

11: Detect new cells, �( New ) 
t as defined in Eq. (21) 

12: Calculate ζ (k ) 
t given �( k ) 

t 

13: Calculate the corrected state estimation 

ˆ ξt| t using Eq. 

(13) 

14: end for 

15: end for 
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Table 2 

Processing Time: Run time of most data sets that were tested. Run 

time varies depending on the length of the sequence, the size of the 

cells, and the number of cells in each frame. All evaluations were con- 

ducted on an Intel i7 3.40 GHz CPU with 16GB RAM. 

Data # Frames Total time Avg. time 

[min] per frame [sec] 

Fluo-C2DL-MSC 48 53 76.5 

Fluo-N2DH-SIM + 110 38.5 25.6 

Fluo-N2DH-GOWT1 92 58 31.8 

H1299 72 8 6.6 

MCF-10A 141 36 15.3 

RPE 400 2264.5 340 
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f the total number of detected. Furthermore, the initial segmen-

ation allows us to accurately estimate the very few parameters

sed in the proposed framework. These include the minimum and

aximum cell sizes, T min −cel l −size and T max −cel l −size , respectively; the

nitial parameters state vector for each cell, including the loca-

ion, velocity, and shape uncertainty variables; and the initial fore-

round and background intensity distributions, ˆ f F G and 

ˆ f BG , re-

pectively. These manual annotations eliminate the need for pa-

ameter tuning, which requires technical expertise. We also note

hat the parameters extracted from the initialization are valid for

n entire sequence, regardless of its length and therefore can be

seful to other sequences acquired under the same conditions.

ppendix D shows an example of such a scenario. 

arameters . The following parameters were defined for all data

ets: The covariance matrices Q t , R t (see Section 2.3 ) are set as the

dentity matrix. The transition matrices A and B (see Section 2.3 )

re defined as follows: A i,i = 1 , for i = 1 . . . 5 ; A 1 , 3 = A 2 , 4 = 1 . B i,i =
 for i ∈ [1, 2, 5] and otherwise 0. Likelihood: The parameter α (de-

ned in Eq. (18)) , is set to 0.5. 

seudocode . For all experiments we followed Algorithm 1 . 

.2. Evaluation methods 

We evaluated the method using the scheme proposed in the

nline version of the Cell Tracking Challenge. Specifically, SEG for

egmentation, as defined in ( Maška et al., 2014; Ulman et al., 2017 ),

nd TRA for tracking. TRA uses the Acyclic Oriented Graph Match-

ng ( AOGM ), as defined in Matula et al. (2015) , which assesses how

ifficult it is to transform a computed graph into a given ground-

ruth graph. The TRA measure is defined as follows: 

 RA = 1 − min { AOGM, AOGM 0 } /AOGM 0 

here AOGM 0 is the AOGM value required for creating the refer-

nce graph from scratch (i.e., it is the AOGM value for empty track-

ng results). OP is defined as the mean of TRA and SEG. We sub-

itted our results on three of the Cell Tracking Challenge competi-

ion sequences and received the TRA, SEG and OP scores from the

hallenge organizers. We also evaluated several additional data sets
sing the same measures. Furthermore, we evaluated the tracking

esults using two measures suggested by Kan et al. (2011) , P track ,

epresenting the percentage of correctly detected tracks, and P links ,

epresenting the percentage of correct frame to frame associations.

Table 5 shows the results on our data for all measures. 

.3. Experiments 

We examined eight different live cell microscopy sequences:

hree from the Cell Tracking Challenge, two from our own datasets,

wo datasets of our colleagues, and an additional publicly available

ataset ( Rapoport et al., 2011 ). All experiments were conducted on

n Intel i7 3.40 GHz CPU with 16GB RAM. Processing time of five

equences is detailed in Table 2 . Run-time varies between data sets

nd is dependent on the cells’ size, the number of cells per frame,

nd sequence length. 

.3.1. Cell Tracking Challenge data sets 

We tested our method on three of the Cell Tracking Chal-

enge data sets, namely Fluo-C2DL-MSC, Fluo-N2DH-GOWT1, and

luo-N2DH-SIM+. Reported scores were calculated by the challenge

rganizers and published on the website under the label BGU-

L: www.celltrackingchallenge.net/latest-results.html . We note that, 

n contrast to all other data sets, the Fluo-C2DL-MSC cells ex-

ibit highly irregular shapes as can be seen in Fig. 5 . In addi-

ion, the cells’ motion is relatively fast. Nevertheless, as shown by

he results in Table 3 , our tracking and segmentation method ob-

ained the best scores for all measures (TRA, SEG, OP) by a sig-

ificant margin. These results highlight one of the advantages of

he method, which does not assume convexity or any other shape

odel. On the other hand, when cell shapes are elliptical, such as

he Fluo-N2DH-GOWT1 and Fluo-N2DH-SIM+, our method ranks in

he middle. 

.3.2. Additional data sets 

We tested the algorithm on five additional, high-throughput

ata sets, consisting of one sequence each, as listed in Table 4 :

1) H1299 cells, expressing eYFP-DDX5 in the background of

n mCherry tagged nuclear protein, rate: 3fph, 72 frames

 Cohen et al., 2008 ) (Alon Lab, Weizmann Institute of Science).

2) Two data sets RPE cells, expressing eYFP-DDX5 in the back-

round of a p21-mVenus tagged nuclear protein, rate: 4fph, 400

rames (Lahav Lab, Harvard Medical School). One of the RPE data

ets along with its manual annotations is available upon request.

CF-10A cells, expressing RFP-Geminin and NLS-mCerulean, rate:

fph, 142 frames (Brugge Lab, Harvard Medical School). See also

 Rapoport et al., 2011 ) for the PSC data set. These data sets exhibit

ifficult challenges such as unclear boundaries (H1299), very long

equence with considerable motion (RPE), numerous mitotic events

MCF-10A) and dense cell population (PSC). Fig. 6 shows examples

rom these experiments. Further, qualitative evaluations are shown

n Fig. 7 . Fig. 8 shows a visualization of the tracking results for the

http://www.celltrackingchallenge.net/latest-results.html
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Fig. 6. Visual results. Selected frames presenting full views (odd rows) and zoom-in (even rows) of the results obtained for the MCF-10A data set (rows 1–2, courtesy of 

Brugge Lab, Harvard Medical School); H1299 data set (rows 3–4, courtesy of Alon Lab, Weizmann Institute of Science), and the RPE data set (rows 5–6, Lahav Lab, Harvard 

Medical School), respectively. Cells’ instances initiating new tracks (right after mitosis) are outlined in magenta. For links to full videos refer to Table 7 . 
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Table 3 

Results on Challenge Data Sets. The results of the current first to third ranking algorithms were taken 

from the Cell Tracking Challenge website. The Fluo-C2DL-MSC shows the strength of our method. 

Fluo-C2DL-MSC Fluo-N2DH-GOWT1 Fluo-N2DH-SIM + 

OP SEG TRA OP SEG TRA OP SEG TRA 

BGU-IL (Ours) 0.759 0.645 0.873 0.760 0.656 0.864 0.855 0.807 0.902 

1st 0.686 0.582 0.800 0.878 0.791 0.975 0.951 0.927 0.976 

2nd 0.636 0.574 0.691 0.874 0.781 0.957 0.901 0.893 0.925 

3rd 0.546 0.465 0.645 0.858 0.770 0.948 0.901 0.887 0.916 

Table 4 

Additional data sets. Examples of the results for each data set can be seen in Figs. 6 and 7 . 

Data owner Cell type # of Frames Frame dimensions # Cells first-last frames 

Brugge Lab Harvard Medical School MCF-10A 142 501x400 42–80 

Alon Lab Weizmann Institute of Science H1299 72 640x511 41–69 

Lahav Lab Harvard Medical School RPE 564 1024x1024 67–92 

Lahav Lab Harvard Medical School RPE 433 1024x1023 31–49 

Rapoport et al. PSC 209 1376x1038 283–2344 

Fig. 7. Visual results: Selected frames presenting full views (odd rows) and zoom in (even rows) of the results obtained for the RPE data set (rows 1–2, Lahav Lab, Harvard 

Medical School) and the PSC data set ( Rapoport et al., 2011 ) (rows 3–4). Cells’ instances initiating new tracks (right after mitosis) are outlined in magenta. For links to full 

videos refer to Table 7 . 
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Fig. 8. XYT plots of cell tracks; the horizontal axes represent the image plane, the vertical axis represents time. Each colored line represents a cell track. Refer to 3D tracks: 

https://youtu.be/YS5COOY3jeA for live 3D demonstration for all the tracking results presented at Figs. 6 and 7 . 

Table 5 

Quantitative results for three additional data sets. Columns 2–4 show the OP, SEG, 

and TRA measures as explained in Maška et al. (2014) . The P links measure (percent- 

age of correct matches between two consecutive frames is shown in column 5. The 

6th column shows the P tracks measure ( Section 3.2 ). It is evident that P tracks is sig- 

nificantly lower than the TRA, this is due to its sensitivity to single mistakes along 

the track. The P tracks measure, however, better answers the needs of the intended 

biological experiment. 

Data Set OP SEG TRA P links P tracks 

H1299 0.786 0.687 0.90 0.993 0.79 

RPE — 0.846 — 0.989 0.69 

MCF-10A 0.888 0.796 0.981 0.999 0.93 

Table 6 

Properties of additional data sets. Some visual results obtained for these data 

sets can be seen in Fig. 6 . Data owners: 1. Alon Lab, Weizmann Institute of 

Science. 2. Lahav Lab Harvard, Medical School. 3. Brugge Lab, Harvard Medical 

School. Quantitative results are shown in Table 5 . 

Cell Sequence Track Cell 

Type Length Length (frames) Size (pixels) 

Mean Min Max Mean Min Max 

H1299 1 72 34 3 72 345 12 1084 

RPE 2 400 54 2 185 516 138 1055 

MCF-10A 3 141 50 2 141 649 87 1938 
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MCF-10A and H1299 data sets. For quantitative evaluation of three

of these data sets, refer to Table 5 , which shows the OP, SEG, and

TRA measures, as other tracking measures. Results can be better

evaluated when considering the length of each sequence as well

as the tracks’ and cells’ sizes. Refer to Table 6 for this information.

We note that although the P links measure seems very high (greater

than 98%), the P tracks drops drastically. Note that the RPE data set is

especially long, 400 frames, and thus prone to errors that greatly

affect P tracks , produced an accuracy of 69% and still kept a relatively

high SEG measure of 0.846. Refer to Table 7 for the full visualiza-

tion videos of all data sets. 

4. Summary and conclusions 

Cell segmentation and tracking are intimately related. In this

work we demonstrated the strength of jointly solving these prob-

lems, where each supports the other, and together yield more ac-

curate results. This was accomplished by our novel probabilistic

formulation of cell-to-cell association and segmentation. By ex-

panding the Kalman state vector to include the shape uncertainty

and intensity levels, we were able to accurately estimate the dy-

namics of cells’ shape as well as their location and motion. The
roposed contribution, termed the dynamic shape model (DSM),

lso allows accommodating versatile cell shapes, and serves as a

rior in our model. We also introduced a unique view of the FM

istance and use it to construct the likelihood of the pixel segmen-

ation. The prior, from the DSM, and the likelihood, from the FM,

onstructed the posterior probabilities. By applying the commonly

sed MAP estimator, we obtained the final segmentation and asso-

iation of the cells at each frame. 

Our method was tested on several different data sets. These in-

lude three Cell Tracking Challenge ( Maška et al., 2014 ) data sets

nd five additional data sets acquired in a variety of ways and

n a variety of laboratory settings. The results obtained demon-

trate the ability of the proposed method to handle long sequences

hundreds of frames) in an elegant and robust manner. Qualitative

esults (see link to videos in Table 7 ) and quantitative compar-

sons demonstrate that our method outperforms the state of the

rt, where the cells follow no apparent shape assumption ( Table 3 ).

t should be noted that we tested our method using a very strict

ull track measure in addition to the commonly used evaluation

etrics. This measure, which cannot tolerate even a single error

ithin a cell’s track, is more suitable to cell lineage construction.

inally, recognizing the substantial challenges in the analysis of

igh-throughput microscopy imaging, we believe that the key con-

epts introduced here have great potential for a wide variety of

iological experiments. 

Future work will aim to complete the missing link for cell lin-

age reconstruction, and focus on mitosis detection in the spirit of

ilad et al. (2015) . 

A compiled version of the method and a utility for the anno-

ation of the first two frames can be downloaded from: https://

ithub.com/arbellea/CellTracking AndSegmentationCompiled.git and

ttps://github.com/arbellea/ManualAnnotationTool . 
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ersity (A.R.); The Kreitman School of Advanced Graduate Studies

A.R.); CONACyT/Fundacion Mexico en Harvard and Harvard Merit

https://youtu.be/YS5COOY3jeA
https://github.com/arbellea/CellTrackingAndSegmentationCompiled.git
https://github.com/arbellea/CellTrackingAndSegmentationCompiled.git
https://github.com/arbellea/ManualAnnotationTool
https://doi.org/10.13039/501100003977
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Table 7 

Results for all available data sets. Each data set points to two links, the first is a link to the video with the contours and labels of the 

cells marked throughout the sequence. The second link is a visualization of the traces of the cells in 3D space (see Fig. 8 ), where the 

z-axis indicates the frame number. Data Owners: 1. Cell Tracking Challenge Maška et al. (2014) ; 2. Brugge Lab, Harvard Medical School; 

3. Alon Lab, Weizmann Institute of Science; 4. Lahav Lab, Harvard Medical School; 5. Rapoport et al. ( Rapoport et al., 2011 ). 

Cell Type Results Link Results Link - Traces 

Fluo-C2DL-MSC 1 https://youtu.be/u30jSoZj62k https://youtu.be/-UjynjlYB88 

Fluo-N2DH-SIM+ 1 https://youtu.be/i3uPOxDQ8KA https://youtu.be/DJrHMviF4uM 

Fluo-N2DH-GOWT1 1 https://youtu.be/3KzPWOR2kSg https://youtu.be/xjpU _ SS4zNY 

MCF-10A 2 https://www.youtube.com/watch?v=hWXhNe2G7EY https://www.youtube.com/watch?v=2cRTHSRSfYc 

H1299 3 https://www.youtube.com/watch?v=mdB77zKbIHU https://www.youtube.com/watch?v=KTfw365zgf8 

RPE 4 https://www.youtube.com/watch?v=mlYAYIcl1yc https://www.youtube.com/watch?v=W2540XJ9WCc 

RPE 4 https://www.youtube.com/watch?v=CBYSNkeIHG8 https://www.youtube.com/watch?v=7mk5AzX3V5Q 

PSC 5 https://www.youtube.be/K5D2YjR58ic www.youtube.com/watch?v=3R8RBjOLviQ 
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ellowship (J.R.). The Jane Coffin Childs Memorial Fund for Medical

esearch (J-Y.C.); the JCC fellowship (J-Y.C.); the National Institutes

f Heath ( NIH GM083303 G.L), (NIH P50 GM107618 J-Y.C.) and (NIH

M116864 J.R). 

ppendix A. Shape uncertainty 

The modified Hausdorff distance, d MHD , calculates a mean mea-

ure of distances between the two contours from frames t and

 − 1 . The fluctuation around the midline between the contours is

hus 1 
2 d MDH . We assume that the fluctuations in each direction,

nside and outside of the contour, in frame t + 1 will also be in

he magnitude of 1 
2 d MHD . We set ε such that at pixels, where the

igned distance from the contour is ˆ φ( k ) 
t | t −1 

( x ) = ± 1 
2 d MHD the value

f the prior would be 

P (x ∈ �(k ) 
t | �t−1 , ξt−1 ) � (1 + exp (∓

1 
2 

d MH √ 
3 

2 π d MH 

)) −1 = (1 + exp (∓ π√ 

3 
)) −1 

0 . 5 ± 0 . 36 . This allows the prior to accommodate reasonable

uctuations with respect to d MH . Note that the cumulative dis-

ribution function of a logistic distribution with zero mean and

tandard deviation σ is defined as: P log (x ) = (1 + exp ( πx √ 

3 σ
)) −1 .

hus, defining ε(k ) 
t � 

√ 

3 
2 π d MH is equivalent to setting σ = 

d MH 
2 . 

ppendix B. Parameter robustness 

In order to evaluate the robustness of parameter α from

ection 2.5 we examined the TRA and SEG measures of the Cell

racking Challenge ( Maška et al., 2014 ) training sequences. We

hanged the parameter in the range (0, 1) and ran the complete

equence. Fig. B.9 shows a wide range of equally good selections

f parameter α (defined in Section 2.5 which denotes the weight
Fig. B.9. SEG and TRA measures for the Cell Tracking Challenge data sets as a function 
f the foreground vs. background) demonstrating the method’s ro-

ustness to the choice of parameter. 

ppendix C. Initialization tool 

As our method requires the manual annotation of the first

wo frames, we present a utility for easy annotation. The util-

ty can be freely downloaded from https://github.com/arbellea/

anualAnnotationTool . The user can easily annotate two frames

sing the mouse and keyboard shortcuts to zoom in and out of the

rame, move the frame to all sides, clear and correct annotations.

he utility also supports the option to save intermediate results

hat can be later loaded for correction or continued annotation. In-

truction for use and all the keyboard shortcuts can be found in

he README.txt file along with the utility. 

ppendix D. Sequence to sequence initialization 

Our method currently requires the manual annotation of the

rst two frames of each sequence. The initial segmentation allows

s to accurately estimate the very few parameters used in the pro-

osed framework. However, we believe that this requirement can

e relaxed when an initialization of a similar sequence, under sim-

lar conditions, is available. We conducted the following experi-

ent using the Cell Tracking Challenge Fluo-N2DH-SIM+ data set

onsisting of both train (with available ground truth) and test se-

uences. We first ran the method on the training sequence and

valuated the SEG and TRA results as a baseline, 0.8431 and 0.9642

espectively. We then ran the method on the training sequence

gain, with initialization from the test sequence and compared the

esults. The results show a minor degradation with SEG and TRA
of α. The wide plateau shows the robustness of the method to the selection of α. 

https://youtu.be/u30jSoZj62k
https://youtu.be/-UjynjlYB88
https://youtu.be/i3uPOxDQ8KA
https://youtu.be/DJrHMviF4uM
https://youtu.be/3KzPWOR2kSg
https://youtu.be/xjpU_SS4zNY
https://www.youtube.com/watch?v=hWXhNe2G7EY
https://www.youtube.com/watch?v=2cRTHSRSfYc
https://www.youtube.com/watch?v=mdB77zKbIHU
https://www.youtube.com/watch?v=KTfw365zgf8
https://www.youtube.com/watch?v=mlYAYIcl1yc
https://https://www.youtube.com/watch?v=W2540XJ9WCc
https://www.youtube.com/watch?v=CBYSNkeIHG8
https://www.youtube.com/watch?v=7mk5AzX3V5Q
https://www.youtube.be/K5D2YjR58ic
https://www.youtube.com/watch?v=3R8RBjOLviQ
https://doi.org/10.13039/100000002
https://github.com/arbellea/ManualAnnotationTool
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values 0.8347 ( −0.0084) and 0.9605 ( −0.0037) respectively. The

minor difference in the results shows the method’s robustness to

initialization parameters and may indicate that a similar process

will reduce the need for manual annotations for similar sequences.
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