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We are all individuals: causes and consequences of non-genetic
heterogeneity in mammalian cells
Alexander Loewer1 and Galit Lahav2
The human body is formed by trillions of individual cells. These

cells work together with remarkable precision, first forming an

adult organism out of a single fertilized egg, and then keeping

the organism alive and functional for decades. To achieve this

precision, one would assume that each individual cell reacts in

a reliable, reproducible way to a given input, faithfully executing

the required task. However, a growing number of studies

investigating cellular processes on the level of single cells

revealed large heterogeneity even among genetically identical

cells of the same cell type. Here we discuss the sources of

heterogeneity in mammalian systems; how cells ensure reliable

processing of information despite fluctuations in their

molecular components; and what could be the benefit of cell-

to-cell variability for mammalian cells.
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Origin of heterogeneity
Mammalian cells have to deal with double trouble when

it comes to heterogeneity. Part of the heterogeneity

emerges from inside the cell, as a result of fluctuations

in cellular components and changes in cellular state,

while a dynamically changing microenvironment con-

tributes additional uncertainty (Figure 1). Fluctuations

in internal components are the consequence of the dis-

crete nature of basic cellular processes. Main culprits are

the low number of participating components, the burst-

like nature of eukaryotic transcription, and random seg-

regation at cell division, leading to stochastic changes in

mRNA number and protein levels [1–3]. These fluctu-

ations can affect how individual cells respond to external

signals and influence cellular decision-making. For

example, fluctuations of regulatory proteins were shown
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to determine the probability and timing of ligand-

induced apoptosis [4��] and the outcome of stem cell

differentiation [5].

In addition to stochastic fluctuations, cellular states (such

as cell-cycle phase or stress from intrinsic sources) have

great influence on the cellular response. Intrinsic damage,

for example, triggers a pulse of the tumor suppressor p53

in proliferating cells. In un-synchronized cells, the p53

response appears to happen spontaneously, giving the

impression of a stochastic process. However, when the

cell-cycle phase is taken into account, it becomes clear

that p53 pulses are correlated with cellular activities that

cause intrinsic damage, for example DNA replication

[6��].

Finally, the microenvironment of a cell is an important

determinant of the cellular response. Parameters, such

as local cell density, number of cell–cell contacts or free

space per cell vary dramatically between individual

cells. These parameters can influence cellular state

and phenotype such as efficiency of endocytosis or

susceptibility for viral infection [7��]. Studying how

fluctuation of internal components, cellular states and

changes in the microenvironment cause heterogeneity

in individual mammalian cells is essential for our ability

to understand and predict cellular responses [8,9].

Observing and measuring heterogeneity in
mammalian cells
Historically,  cellular signal processing has been inves-

tigated with experiments based on populations of cells.

While these experiments produce robust and reprodu-

cible data, their results only represent the average

behavior of cells. This can be sufficient when all cells

respond unanimously, for example when cells are

treated with strong inputs that stimulate them in a

synchronize manner despite their basal variations.

However, when cells encounter weak stimuli, or when

they lose synchrony during sustained activation, the

response becomes more dependent on an individual’s

cellular state. For example, p53 dynamics in response to

DNA damage were originally characterized as damped

oscillations [10]. We later showed in single-cell exper-

iments that individual cells show varying numbers of

p53 pulses of fixed amplitude and duration [11]. The

appearance of damped oscillations resulted from aver-

aging the pulses across many cells (Figure 2). There are

multiple additional examples known where the actual

dynamical behavior of a signaling pathway is lost in the
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Multiple internal and external factors increase heterogeneity between individual genetically identical cells of the same type. Experimental techniques

that average the behavior of many cells together do not allow observing these variations and can result in misleading assumptions about cellular

responses.
average response of the population [6,12,13�]. In such

cases experimental techniques that allow quantification

of the cellular response with single cell resolution are

essential.

A powerful technique for measuring cell-to-cell varia-

bility in protein abundance and dynamics is live cell

time-lapse microscopy. Proteins of interest are fused

with fluorescent proteins, which allow quantitative

measurements of their levels and sub-cellular localiz-

ation with high temporal and spatial resolution [14].

Various strategies have been used for generating live

cell reporters, including transiently transfecting cells

with vectors expressing the fluorescent reporters [12];

or the establishment of stable clonal cell lines [6,11,13�].
Another approach is to integrate a fluorescent protein in

the endogenous gene locus, either on bacterial artificial

chromosomes [15] or in the genome by random viral

insertion and screening [16] or by targeted somatic

recombination [17]. The advantage of this approach is

that the reporter is under the exact same transcription

and translational regulation as the endogenous gene. For

quantifying protein activity in single living cells, special-

ized biosensors have been developed [18]. They are

often based on modification-dependent interaction of

protein domains, which can be measured by Foerster

Resonance Energy Transfer (FRET). This allows, for

example, determining the activities of kinases [19–21],

and second messengers like calcium [22]. Similarly, loss

of FRET signal can be used to monitor the cleavage of

defined peptide sequences by proteases [23].

One limitation of live-cell imaging is the time it takes

for generating reliable reporter lines. And even after

such a line exists, not all proteins can be successfully

fused to a fluorescent tag while keeping them func-

tional and without perturbing the natural system. To
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overcome these challenges, the levels and post-transla-

tional modification of proteins can be observed at the

single cell level by flow-cytometry [24,25] or immuno-

fluorescent microscopy [26]. While these methods are

powerful in revealing heterogeneity in a large number

of cells, they are limited by the inability to follow the

same cell over time. A big effort is being made in

developing new computational analysis for extracting

dynamical information from protein distributions at

stationary state.

mRNA distributions can be monitored in fixed cells

using single cell RT-PCR for measuring high abundance

transcripts [27], and with digital PCR for measuring

mRNA at low concentrations [28]. In addition RNA

levels have been followed successfully in fixed mamma-

lian cells using fluorescent in situ hybridization (FISH)

[29,30,31�]. This approach allows measurements of

multiple mRNAs using distinct fluorophores. Although

genome-wide transcription profiling in single mamma-

lian cells is still challenging and associated with high

costs, there are a few successful examples for such studies

especially in neurons [32,33]. mRNA molecules can also

be measured in real time using fluorescent RNA-binding

proteins [34]. The strength of this approach is that it

allows monitoring RNAs without delay, as the fluor-

escent proteins are constitutively expressed, giving them

ample time to mature. In addition, both nascent mRNA

at the genomic locus and mature mRNA in the cyto-

plasm, including its subcellular location, can be visual-

ized with up to single molecule resolution. However,

addition of the corresponding binding sites to the

untranslated regions may alter the turnover rates of

the RNA. Alternatively, indirect measurements of gene

activity can be achieved through expressing a destabi-

lized fluorescent protein under defined promoter

sequences [6].
es of non-genetic heterogeneity in mammalian cells, Curr Opin Genet Dev (2011), doi:10.1016/
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Figure 2

single cell dynamics

population dynamics

O
b

se
rv

at
io

n
s

In
si

g
h

ts

Recurrent initiation

p53 Mdm2

Chk2

ATM

Wip1

time

time

p5
3

p5
3

population dynamics

single cell dynamics

time

p5
3

time

p5
3

Sensitivity through excitability

Tolerance through modifications

time

p5
3

damage

time

p5
3

 damage

time

A
ct

iv
e 

 p
53

damage

time

A
ct

iv
e 

p5
3

 damage

DNA damage Basal conditions

activeinactive
p53 modifications:

proliferation cell cycle arrest

Current Opinion in Genetics & Development

Single cell observations: population studies suggested that p53 levels are low in basal conditions and show damped oscillations in response to DNA

damage [10]. Single live-cell analysis using fluorescent reporter for p53 revealed that individual cells show a series of undamped p53 pulses in

response to DNA damage [11] and similar, but less frequent pulses in basal conditions [6��]. Averaging across a population of cells masked these

behaviors of p53 as the timing of pulses varies between cells in basal conditions and different cells show different number of pulses in response to DNA

damage. Insights: before the single cell studies, the general view was that the delayed negative feedback loop between p53 and Mdm2 is sufficient for

triggering p53’s damped oscillations [10,51]. However, this simple mechanism was insufficient in explaining the undamped pulses seen in single cells.

Therefore, a new model was developed, in which the p53 pulses are driven by pulses in the upstream signaling molecules ATM-P and Chk2-P through

a negative feedback loop from p53 to ATM [36]. In this model, p53 pulses are the result of repeated initiation from recurring examination of damaged

DNA by ATM. The spontaneous bursts that were found in basal conditions taught us that activation of p53 is excitable; transient DNA damage during

normal growth triggers similar pulses as high sustained damage. However, transient damage is not sufficient for changing p53 modifications from an

inactive to an active state. Therefore, p53 pulses in basal conditions do not induce a cellular response such as cell cycle arrest [6��].
Gaining insights from studying non-genetic
heterogeneity
Data collected from single cell measurements can lead to

new insights into the structure and behavior of the

studied system. First, determining which properties of

the response are robust and which vary between cells can

help better understand the wiring of the network and the

parameters controlling it. For example, nuclear NFkB

activity was found to be constant after stimulation with

varying concentrations of ligand; however, the number of
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reacting cells and the duration of the response varied

significantly between cells [13�]. This suggested that cells

are activated in response to TNFa in a digital manner and

led to the development of an improved model of the

NFkB pathway under TNFa stimulation. Similarly, the

finding that p53 pulses show noisy amplitude, but tightly

controlled timing led to new understanding about the

source of noise in this system and to the suggestion of a

new model [35], which was later verified experimentally

[36] (Figure 2).
es of non-genetic heterogeneity in mammalian cells, Curr Opin Genet Dev (2011), doi:10.1016/
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Heterogeneity between cells can also be used to better

understand the underlying principles of complex bio-

logical circuits. For example, the finding that IL-2 re-

ceptor levels vary significantly between T cells revealed

how flexibility is achieved in the immune system be-

tween regulatory and effectors T cells [37�]. In addition,

studying single cells with no extrinsic stimulations helped

understand how sensitivity and tolerance is achieved in

the p53 network (Figure 2). Previous studies based on

populations of cells led to the assumption that p53 levels

are low at basal conditions. Single cell analysis revealed

spontaneous pulses of p53 accumulation that had the

same amplitude and duration as the pulses after DNA

damage. These observations led to two main insights

about the p53 network. First, that the p53 network

behaves as an excitable system where low transient

damage during normal growth leads to a full p53 pulse,

similar to the pulses after severe damage [6��,38]. Second,

when damage is transient, a filtering mechanism keeps

p53 pulses inactive (Figure 2). Specifically, for transcrip-

tional activity, p53 requires a defined set of modifications,

which occur only when damage persists. Such a mech-

anism enables cells to distinguish between transient

damage, which does not justify arrest or cell death, and

severe sustained damage that requires induction of the

full stress response. The combination between an excit-

able system and a slower filtering mechanism is therefore

powerful for cells as it allows a fast sensitive response and

tolerance against noise [6��] (Figure 2).

Potential benefits of non-genetic
heterogeneity
Is heterogeneity beneficial or harmful for cells? In other

words, has heterogeneity evolved as part of an optimized

response [39] or is it just a side effect of noisy responses,

which would otherwise require tight controls and high

costs for correcting [40�]? When considering unicellular

organisms the answer is pretty clear; they often employ

bet-hedging strategies for maximizing survival [41,42]. In

multi-cellular organisms the emerging picture is more

complicated. On one hand, a predictable, synchronized

cellular response is desirable for ensuring the whole tissue

is functioning properly in a uniform way. Indeed, several

reoccurring control circuits (e.g. negative feedbacks, feed

forward and autoregulatory loops) have been shown to

eliminate or tolerate noise [42–45] and a significant

increase in cell to cell variation in gene expression and

splicing has been associated with ageing [46��] and cancer

[31�]. On the other hand, several recent studies suggested

that cell-to-cell variation can, in some cases, contribute to

the proper responses of mammalian cells. Heterogeneity

in PI3K activity was suggested to be beneficial for normal

human cells by maintaining a subset of non-responding

cells, preventing the risk of senescence or cancer of the

whole population [25]. Another recent study showed that

a dual negative feedback motif is optimized to increase

variability in the timing of NFkB oscillations between
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cells, which minimizes fluctuations of the paracrine sig-

naling at the tissue level [47�]. Lastly, in the case of the

p53 response, different sensitivities of individual cells,

resulting from activating p53 in response to intrinsic stress

in basal conditions [6��] may be used to eliminate ‘weak’

cells, while ‘healthy’ undamaged cells survive.

It is also intriguing to ask whether heterogeneity is the

‘norm’; does it exist in most (or all) pathways in human

cells or only in a small subset of them? Much attention has

been given to heterogeneity in specific systems such as

the p53 pathway, NFkB and the immune response,

mainly because these are the systems that have been

looked at the single cell level. We suspect that further

single cell analyses will reveal heterogeneity in many

additional pathways in mammalian cells, while the extent

of heterogeneity may be dependent on the pathway,

tissue or the specific input. New and improved tools

for accurately measuring cellular responses at the single

cell level will allow us to look at many other pathways in

human cells and ask much more precise questions about

the relationship between the initial cell state, the network

behavior and the final outcome. We believe that in the

long term, this kind of approach will also be used in the

clinic. It has already been shown that cell-to-cell variation

can cause a differential response to therapeutic drugs

[48�]. With improved imaging technologies and compu-

tational tools we may be able to measure individual cells’

states and responses in tissues [49,50], and thus make

decisions on the most likely therapy to be effective.
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