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SUMMARY

Human embryonic stem cells (hESCs) are highly sen-
sitive to DNA damage and have low survival ability
relative to differentiated cells. We investigated the
source of this difference by comparing damage
response pathways in hESCs and differentiated cells.
We found that hESCs undergo more rapid p53-
dependent apoptosis after DNA damage than differ-
entiated cells do. However, p53 localization and func-
tion are similar between hESCs and differentiated
cells, suggesting that p53 alone cannot explain the
difference in sensitivity. Instead, we show that mito-
chondrial readiness for apoptosis, known as mito-
chondrial priming, differs between hESCs and differ-
entiated cells. Specifically, the balance between
proapoptotic and antiapoptotic proteins is shifted
closer to the apoptotic threshold in hESCs than in
differentiated cells. Altering this balance in differenti-
ated cells increases their sensitivity and results in cell
death, suggesting that manipulation ofmitochondrial
priming could potentially alter the sensitivity of other
stem cells, including cancer stem cells.

INTRODUCTION

Of the diverse array of possible cellular responses to DNA dam-

age—including DNA repair, cell cycle arrest, senescence, and

apoptosis—human embryonic stem cells (hESCs) primarily

undergo apoptosis (Momcilovic et al., 2010; Wilson et al.,

2010). hESCs are able to self-renew indefinitely and can differen-

tiate into all cell lineages in the body, making it particularly impor-

tant that they maintain genomic integrity. Their high sensitivity

to DNA damage and ability to differentiate make them a good

model system for studying the regulatory networks that control

apoptosis and how they differ between hESCs and their differen-

tiated progeny.
One important protein controlling cell fate decisions in

response to DNA damage is the tumor suppressor protein p53

(Vogelstein et al., 2000; Vousden and Lane, 2007). p53 was pre-

viously shown to be induced in response to DNA damage in

hESCs, primarily triggering apoptosis (Filion et al., 2009; Grand-

ela et al., 2007; Qin et al., 2007). In somatic cells, p53 is known to

contribute to cell death through two primary mechanisms. First,

nuclear p53 activates the transcription of proapoptotic genes,

such as PUMA, BAX, and NOXA (Villunger et al., 2003). Second,

cytoplasmic p53 directly interacts with mitochondrial proteins,

acting as a direct activator of Bak and/or Bax oligomerization,

or as a sensitizer, by sequestering antiapoptotic proteins (Green

and Kroemer, 2009). In hESCs, there is evidence that p53 trig-

gers apoptosis exclusively through the mitochondrial pathway

after UV irradiation (Qin et al., 2007). However, other work

showed that p53 not only associates with mitochondria but

also translocates to the nucleus in response to DNA breaks

caused by the topoisomerase-II poison etoposide, suggesting

that induction of apoptosis by p53 involves a transcription-

dependent pathway (Grandela et al., 2007). Additionally,

the genome-wide transcriptome of hESCs after g irradiation

revealed altered gene expression of primarily p53-dependent,

proapoptotic transcripts (Sokolov et al., 2011).

The cellular responses of differentiated cells to DNA damage

differ widely depending on the tissue of origin. For example, tis-

sues vary drastically in their survival ability after irradiation: some

tissues, including those comprising bone marrow, small intes-

tine, thymus, and spleen, are acutely affected by even low doses

of radiation, while tissues from kidney, heart, liver, and lung are

relatively resistant (Gudkov and Komarova, 2003). While it is

thought that sensitivity to DNA damage tends to be character-

istic of highly proliferating cells, some rapidly dividing tumors

are resistant to chemotherapy, while other slowly dividing

tumors are chemosensitive, suggesting that additional factors

affect the cellular damage response (Gudkov and Komarova,

2003). Distinct p53 expression and activity in cells from different

tissues can be a factor contributing to differential tissue sensi-

tivity to DNA damage (Komarova et al., 1997). In addition, recent

studies have found that cells’ relative mitochondrial priming

affects their sensitivity to DNA damaging drugs (Certo et al.,
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Figure 1. DNA Damage Leads to Rapid p53-Dependent Apoptosis in

Undifferentiated hESCs, but Not in Differentiated Cells

(A) Immunoblot of c-PARP and Oct4 in hESCs and differentiated cells treated

with 100 ng/ml of NCS.

(B) Immunoblot of c-PARP and Oct4 of cells differentiated with 1 mM RA for 0,

1, 2, 3, and 4 days, before and after NCS treatment for 3 hr.

(C) Immunoblot of c-PARP and Oct4 in hESCs transfected with scramble or

Oct4 siRNA and treated with NCS.

(D) DNA content (propidium iodide incorporation) measured by flow cytometry

of hESCs and differentiated cells, treated with NCS. The percentage of cells in

the sub-G1 fraction is marked.

(E) Immunoblot of c-PARP and Oct4 in hESCs at later time points after NCS

treatment.

(F) Immunofluorescence images of an hESC colony costained with DAPI

and antibodies against Oct4 and c-PARP, fixed 2.5 hr after damage with NCS.

(G) Immunofluorescence images of hESCs and differentiated cells before and

15 min after treatment with NCS. Cells were costained with DAPI and anti-

bodies against Oct4 and g-H2AX.
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2006; Ni Chonghaile et al., 2011; Vo et al., 2012). Mitochondrial

priming denotes the intrinsic potential of cells to undergo

apoptosis due to the balance of proapoptotic and antiapoptotic

Bcl-2 family proteins at the mitochondria and can be assessed

by BH3 profiling (Ni Chonghaile et al., 2011). This assay mea-

sures mitochondrial outer membrane permeabilization (MOMP)

after mitochondria are exposed to proapoptotic promiscuously

interacting BH3 peptides. Higher mitochondrial priming deter-

mined by BH3 profiling has been shown to correlate with clinical

response in several cancers (Ni Chonghaile et al., 2011) as well

as increased chemosensitivity (Vo et al., 2012).

Here we determined the origin of the sensitivity of hESCs

to DNA damage compared with their differentiated progeny.

Specifically we investigated whether the p53 pathway is differ-

entially induced in hESCs and differentiated cells or whether

other intrinsic cellular properties can explain the difference in

sensitivity. We found that DNA damage rapidly induced p53-

dependent apoptosis in hESCs. p53 target genes were also

induced; however, inhibition of p53’s transcriptional activity or

expression of exclusively cytoplasmic p53 did not prevent

apoptosis, suggesting that p53’s cytoplasmic function is the

main contributor to apoptosis of hESCs. p53 was also induced

in differentiated cells. Its localization and function did not

differ between hESCs and differentiated cells. Instead, we

found that differential mitochondrial priming, measured by

BH3 profiling, determined the sensitivity of hESCs to DNA

damage. hESCs showed high mitochondrial priming relative

to their differentiated progeny. Increasing the low priming of

differentiated cells increased their sensitivity to DNA damage

and led to apoptosis.
RESULTS

DNA Damage Leads to Rapid p53-Dependent Apoptosis
in hESCs, but Not in Differentiated Cells
We first characterized the response of hESCs to DNA damage

and compared their behavior with that of differentiated cells

from the same background. DNA damage was induced using

the radiomimetic drug neocarzinostatin (NCS), which creates

double-stranded DNA breaks (DSBs) within 5 min following its

addition to cell culture medium (Shiloh et al., 1983). Cells were

differentiated with 1 mM retinoic acid (RA) for 4 days (Andrews,

1984), and differentiation was confirmed using an antibody

against Oct4, one of the key pluripotency genes in hESCs

(Niwa et al., 2000). Induction of apoptosis was measured using

an antibody against the 89-kDa fragment of cleaved PARP

(c-PARP), which is cleaved during apoptosis by caspase-3.

We found that hESCs accumulated c-PARP within 3 hr after

DNA damage. In contrast, differentiated cells exhibited no

c-PARP (Figure 1A). Treatment of hESCs with RA for shorter

periods allowed us to investigate cells in the process of differen-

tiation. We observed that decrease in Oct4 during RA treatment
(H) Immunoblot of c-PARP, p53, and Oct4 in hESCs transfected with scramble

or p53 siRNA and treated with NCS.

(I) Immunoblot of c-PARP, p53, andOct4 in hESCs and p53shRNA hESCs after

3 hr of NCS or 3 hr of Nutlin-3a treatment at the indicated concentrations.

See also Figure S1.
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was correlated with reduction of c-PARP after damage (Fig-

ure 1B). We further demonstrated the strong connection

between pluripotency and induction of apoptosis by silencing

Oct4. Oct4 knockdown cells show a drastic reduction in

c-PARP levels after damage in comparison with hESCs treated

with scramble siRNA (Figure 1C). Sensitivity to DNA damage

was confirmed in two additional hESC lines (Figures S1A and

S1B available online), suggesting that the differential sensitivity

between stem and differentiated cells is not limited to one spe-

cific line. Furthermore, the higher induction of c-PARP in hESCs

compared with their differentiated progeny was consistently

reproduced in response to additional DNA-damage-inducing

agents, including g irradiation, UV radiation, and etoposide

(Figure S1C).

Annexin V measurements confirmed that hESCs, but not

differentiated cells, undergo apoptotic death after DNA damage

(Figure S1D). Consistently, cell cycle analysis showed that the

sub-G1 fraction of the population, which represents dead cells,

increases rapidly in undifferentiated cells (Figure 1D). Over

50% of cells died within 3 hr after damage. In contrast, the

sub-G1 fraction of the differentiated cells remained low following

DNAdamage.We noticed that a small fraction of hESCs survived

the damage. To determine whether these were resistant stem

cells or spontaneously differentiated cells, we monitored the

levels of Oct4 and c-PARP in the surviving cells 24 hr after dam-

age. We found that the remaining cells were no longer Oct4 pos-

itive (Figure 1E), suggesting that they had already differentiated

in culture or in response to the damage. These surviving differen-

tiated cells were also c-PARP-negative, supporting pluripotency

as a determinant of sensitivity to damage. In agreement, immu-

nofluorescence (IF) experiments revealed that in a colony

comprising both undifferentiated (Oct4-positive) and spontane-

ously differentiated (Oct4-negative) cells, c-PARP was only

detectable in the undifferentiated cells (Figure 1F). This differ-

ence in sensitivity was not due to different extents of DNA

damage incurred by NCS because the levels of g-H2AX, the

canonical marker for DSBs (Löbrich et al., 2010), were compara-

ble between undifferentiated and differentiated cells (Figure 1G).

Taken together, these results show that hESCs, unlike their

differentiated progeny, respond to DNA damage by rapidly

undergoing apoptosis. This highly sensitive damage response

is linked to pluripotency.

We next determined whether p53 plays a role in the induction

of apoptosis in hESCs in response to DNA damage. p53 levels

were induced in hESCs following DSBs (Figure 1H). Knocking

down p53 using siRNA abrogated the c-PARP response (Fig-

ure 1H). In addition, cultures treated with siRNA against p53

did not show the colony shrinkage or the floating cells observed

in damaged hESC cultures (Figure S1E). This shows that p53 is

required for activation of the apoptotic pathway in hESCs in

response to DNA damage. To determine whether apoptosis in

hESCs can be triggered solely by elevation of p53 and indepen-

dently of DNA damage, we treated cells with Nutlin-3a. Nutlin-3a

is a small molecule that inhibits the binding of Mdm2, a major

negative regulator of p53, to p53, thereby increasing p53 stability

(Vassilev et al., 2004). Nutlin-3a led to an accumulation of p53

and c-PARP to levels comparable to those observed in response

to DNA damage (Figure 1I). The ability of Nutlin-3a to trigger

apoptosis in hESCs suggests that stabilization of p53 is sufficient
to induce apoptosis without requiring additional damage-depen-

dent posttranslational modifications. To further strengthen the

dependency of cell death on p53, we used a short hairpin RNA

(shRNA) against p53 that is stably integrated into hESCs via len-

tiviral infection. Cells carrying the p53shRNA lost induction of

p53 and showed no c-PARP after DNA damage and Nutlin-3a

treatments (Figure 1I). Similar results were obtained when we

used a different hESC line, HUES9, and compared c-PARP

levels after NCS treatment between wild-type and p53�/� cells

(Figure S1F).

p53 Activates Transcription of Proapoptotic Genes
in Both hESCs and Differentiated Cells
In somatic cells, p53 acts as a transcription factor activating

many target genes, including proapoptotic genes (Riley et al.,

2008). We asked whether p53 also activates transcription of pro-

apoptotic genes in damaged hESCs, potentially contributing to

their death in response to DNA damage. We used qRT-PCR to

measure mRNA levels in hESCS of known p53 transcriptional

targets involved in apoptosis (Müller et al., 1998; Nakano and

Vousden, 2001; Oda et al., 2000a, 2000b; Riley et al., 2008;

Robles et al., 2001; Thornborrow et al., 2002). Two genes (BAX

and TP53AIP1) showed almost no induction (Figure 2A). Three

genes (FAS, APAF1, and NOXA) showed between 2- to 3-fold

induction 3 hr after damage. Notably, PUMA, a gene encoding

a proapoptotic BH3-only protein that inhibits antiapoptotic pro-

teins (Chipuk et al., 2005), showed a more than 6-fold induction

in mRNA level after DNA damage. PUMA mRNA and protein

levels were significantly reduced in cells silenced for p53, sug-

gesting that activation of PUMA following DNA damage is p53

dependent (Figures 2B and 2C).

Why do differentiated cells, which originated from the stem cell

population, show such a remarkable difference in their sensitivity

to DNA damage? One possibility is that p53 does not activate

transcription of proapoptotic genes in differentiated cells. We

compared mRNA levels of three proapoptotic p53 target genes

(PUMA,APAF1, and FAS) between undifferentiated and differen-

tiated cells. We found that these proapoptotic genes were

induced in both undifferentiated and differentiated cells (Fig-

ure 2D). In the case of APAF1 and FAS, mRNA levels in differen-

tiated cells even exceeded those in undifferentiated cells.

Moreover, Puma protein levels in differentiated cells reached

comparable levels to those in undifferentiated cells, though the

accumulation was slightly delayed in differentiated cells (Fig-

ure 2E). Taken together, these results show that p53 activates

the transcription of proapoptotic genes in both differentiated

and undifferentiated cells. Therefore, p53’s transcriptional activ-

ity cannot explain the high sensitivity of hESCs to DNA damage

compared with differentiated cells.

Cytoplasmic p53 Contributes to Apoptosis in hESCs
It has been shown that in addition to acting as a transcription

factor, p53 can also activate apoptosis through other mecha-

nisms, for example by interacting with mitochondrial proteins

in the cytoplasm (Green and Kroemer, 2009). To determine

whether such transcription-independent mechanisms contribute

to apoptosis in hESCs, we used the RNA polymerase-II poison

a-amanitin to inhibit transcription during the DNA damage

response. Surprisingly, we found that hESCs still activated
Cell Stem Cell 13, 1–9, October 3, 2013 ª2013 Elsevier Inc. 3



Figure 2. p53 Transcriptional Activity Is

Induced after DNA Damage but Is Not

Distinct between Undifferentiated and

Differentiated Cells

(A) Relative mRNA expression of proapoptotic p53

target genes in hESCs treated with 100 ng/ml

NCS, as measured by RT-qPCR. mRNA levels

were normalized to GAPDH.

(B) Relative PUMA mRNA expression after

treatment with NCS in hESCs transfected with

scramble or p53 siRNA.

(C) Immunoblot of c-PARP, p53, Puma, and Oct4

after treatment with NCS in hESCs transfected

with scramble or p53 siRNA.

(D) RelativemRNA expression of proapoptotic p53

target genes in hESCs and differentiated cells,

undamaged and after 3 hr of NCS. For all genes in

both hESCs and differentiated cells, predamage

and postdamage mRNA levels were statistically

significant (p < 0.05) as determined by Student’s

t test.

(E) Immunoblot of c-PARP, p53, Puma, and

Oct4 in hESCs and differentiated cells, damaged

with NCS.

Data are represented as mean ± SD.

Cell Stem Cell

Mitochondrial Priming Sensitizes hESCs to Damage

Please cite this article in press as: Liu et al., High Mitochondrial Priming Sensitizes hESCs to DNA-Damage-Induced Apoptosis, Cell Stem Cell (2013),
http://dx.doi.org/10.1016/j.stem.2013.07.018
apoptosis after DNA damage (Figure 3A) even when p53 target

genes were not induced (Figure 3B). This apoptosis was p53

dependent, because the p53shRNA hESCs did not activate

c-PARP following damage and a-amanitin treatment (Figure 3A).

These results show that even though p53 target genes are upre-

gulated in damaged hESCs, p53 transcriptional activity is not the

main contributor to the rapid apoptosis seen in these cells. We

therefore checked whether the cytoplasmic activity of p53 con-

tributes to the apoptotic response in hESCs. Using IF to probe

the localization of p53 in damaged hESCs, we found that p53
4 Cell Stem Cell 13, 1–9, October 3, 2013 ª2013 Elsevier Inc.
appeared primarily nuclear (Figure 1F

and Figure 3C). However, by separating

cell lysates into nuclear and cytoplasmic

fractions, we found that a fraction of

p53 (�20%) resided in the cytoplasm

followingDNA damage (Figure 3D). These

low levels of cytoplasmic p53 may be

below the detection threshold of IF. To

determine whether cytoplasmic p53 can

activate apoptosis in hESCs, we ex-

pressed a mutant form of p53 confined

to the cytoplasm and tested its ability to

activate apoptosis. p53 contains a bipar-

tite nuclear localization signal (NLS), part

of which includes Lys305 and Arg306.

The two amino acid substitutions K305A

and R306A cause p53 to be excluded

from the nucleus (O’Keefe et al., 2003).

We cloned the K305A and R306A

mutant p53 and fused it with an

mVenus fluorescent tag. Using lentiviral

infection, we introduced this mutant

p53 (cytop53) into hESCs expressing

p53shRNA. Cytop53 contains synony-
mous substitutions that render it resistant to shRNA knockdown.

Cytop53 was exclusively expressed in the cytoplasm (Figure 3E)

and showed no transcriptional activity (Figure 3F), in contrast to a

wild-type p53-mVenus (wtp53). We found that cells expressing

cytop53 successfully induced c-PARP after damage (Figure 3G).

These results show that cytoplasmic p53 contributes to the

activation of apoptosis in hESCs. The levels of c-PARP were

lower in cells expressing cytop53 in comparison to cells express-

ing wtp53. This may result from reduced cytoplasmic function or

misfolding due to the inserted mutations.



Figure 3. Though p53 Localization Appears

Primarily Nuclear, Residual Cytoplasmic

p53 Is Active in Contributing to Apoptosis

in hESCs

(A) Immunoblot of c-PARP, p53, and Oct4 in

hESCs and a p53shRNA hESC line after 3 hr of

100 ng/ml NCS and/or 4 hr of 15 mg/ml a-amanitin

treatment (1 hr pretreatment when combined

with NCS).

(B) Relative MDM2, PUMA, and NOXA mRNA

expression of hESCs after 3 hr of NCS and/or 4 hr

of a-amanitin treatment (1 hr pretreatment when

combined with NCS).

(C) p53 and DAPI immunofluorescence images of

hESCs fixed before and after 1.5 hr of treatment

with NCS.

(D) Immunoblot of p53 and c-PARP in the nuclear

and cytoplasmic fractions of hESCs. Cells were

undamaged or damaged with NCS for 3 hr.

Histone H4 and the transcription factor Rb serve

as nuclear markers, and tubulin as a cytoplasmic

marker. N, nuclear; C, cytoplasmic.

(E) Phase and fluorescent images of p53shRNA

hESC lines with reintroduced p53-mVenus (wtp53)

and p53K305A,R306A-mVenus (cytop53) after

3 hr of damage with NCS. These cells were then

collected for the immunoblot in 4G.

(F) Relative PUMA mRNA expression in parental

hESCs (wt), p53shRNA hESCs (p53sh), and

p53shRNA hESC lines with reintroduced wtp53

and cytop53 before and after 3 hr of treatment

with NCS.

(G) Immunoblot of p53-mVenus, p53, c-PARP,

and Oct4 in parental hESCs (wt), p53shRNA

hESCs (p53sh), and p53shRNA hESC lines

with reintroduced wtp53 and cytop53 before and

after 3 hr of damage with NCS.

Data are represented as mean ± SD.
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hESCs, Unlike Differentiated Cells, Are Highly Primed
toward Apoptosis Independently of p53
Because p53’s transcriptional activity is similar between hESCs

and differentiated cells and because cytoplasmic p53 can

activate apoptosis in hESCs, we next examined two potential

mechanisms that might explain the p53-dependent apoptosis

observed only in undifferentiated cells. The first is that cyto-

plasmic p53 is active exclusively in undifferentiated cells. The

second is that cytoplasmic p53 is active in both differentiated

and undifferentiated cells, but other intrinsic properties of hESCs

affect their sensitivity to damage. Specifically, recent studies
Cell Stem Cell 13, 1
showed that mitochondrial priming deter-

mines the survival of various cancer cells

(Ni Chonghaile et al., 2011; Vo et al.,

2012). We therefore first explored

whether undifferentiated cells are intrinsi-

cally more ‘‘primed’’ for apoptosis than

differentiated cells. Using BH3 profiling

to measure MOMP induced by proapo-

ptotic BH3-only peptides (Ni Chonghaile

et al., 2011), we found that undifferenti-

ated cells underwent MOMPmore readily
than differentiated cells in response to each peptide in the

panel, at all concentrations (Figure 4A). To better connect mito-

chondrial priming with differentiation, we measured the priming

level during the course of RA differentiation. Our results show

a consistent trend:mitochondrial primingwas highest in undiffer-

entiated cells and decreased gradually with each additional

day of differentiation (Figure 4B). We further showed that

two other hESC lines were more primed than their different-

iated progeny (Figure S2A), suggesting that the correlation

between priming and pluripotency is not limited to one specific

hESC line.
–9, October 3, 2013 ª2013 Elsevier Inc. 5



Figure 4. BH3 Profiling Reveals High Priming of hESCs toward Apoptosis

(A) Heat map of mitochondrial depolarization (percentages indicated by color bar) caused by BH3-only peptides at the indicated concentrations (mM) in hESCs

and differentiated cells.

(B) Heat map of mitochondrial depolarization caused by BH3-only peptides in hESCs treated with 1 mM RA for 0, 1, 2, 3, and 4 days.

(C) Immunoblots of proapoptotic and antiapoptotic proteins in hESCs and differentiated cells. Colored in red are proteins that show differential levels between

hESCs and differentiated cells.

(D) Immunoblot of c-PARP, p53, and Oct4 in hESCs and differentiated cells, untreated, treated with 100 ng/ml NCS for 3 hr, or treated with the indicated

concentration of ABT-263 for 4 hr (1 hr pretreatment when combined with NCS).

(E) Immunoblot of p53 and c-PARP in the nuclear and cytoplasmic fractions of hESCs and differentiated cells. Cells were undamaged or damaged with NCS for

3 hr. Histone H4 and the transcription factor Rb serve as nuclear markers and tubulin serves as a cytoplasmic marker. N, nuclear; C, cytoplasmic.

(legend continued on next page)
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What might lead to high mitochondrial priming in hESCs? We

first testedwhether p53 itself contributes to high priming in undif-

ferentiated cells. Silencing of p53 did not reduce priming; in fact,

we found a slight increase in priming compared with hESCs

expressing scramble shRNA (Figure S2B). Hence, hESCs can

remain highly primed toward apoptosis independently of p53.

Next, we sought to probe the status of the apoptotic machinery

by measuring levels of proapoptotic and antiapoptotic proteins

in hESCs and their differentiated progeny (Figure 4C). While

most proteins showed comparable levels between undifferenti-

ated and differentiated cells, we observed two differences that

are consistent with the correlation between priming and pluripo-

tency. Specifically, hESCs had lower levels of the antiapoptotic

protein Bcl-2 and higher levels of the proapoptotic protein

Puma (Figure 4C). Counterintuitively, undifferentiated cells

showed higher levels of the antiapoptotic protein Mcl-1. Taken

together, these results suggest that Mcl-1 is not amajor determi-

nant of priming in hESCs; instead, the basal balance between

other antiapoptotic and proapoptotic proteins, such as Bcl-2

and Puma, contributes to the differential priming of undifferenti-

ated and differentiated cells.

We next asked whether perturbing the balance between pro-

apoptotic and antiapoptotic proteins can enable differentiated

cells to activate apoptosis. We used ABT-263, a BH3-mimetic

drug that binds and inhibits antiapoptotic proteins including

Bcl-2 (Tse et al., 2008), and we measured c-PARP after DNA

damage. We found that differentiated cells treated with ABT-

263 successfully activated apoptosis after damage (Figure 4D).

This result suggests that the intrinsic balance of proapoptotic

and antiapoptotic proteins is closer to the apoptotic threshold

in undifferentiated cells than it is in differentiated cells. Perturba-

tion of this balance in differentiated cells changes their priming

and leads to apoptosis. Notably, accumulation of c-PARP after

damage in hESCs treated with ABT-263 did not exceed that

in cells not treated with ABT-263 (lanes 2 and 4 of Figure 4D),

suggesting that hESCs are already highly primed.

The observation that differentiated cells can trigger apoptosis

when treated with ABT-263 suggests that p53 is fully functional

in these cells. We have shown that apoptosis in undifferentiated

cells results fromp53 cytoplasmic activity. To determinewhether

cytoplasmic p53 is active only in hESCs and not in differentiated

cells, we tested the localization of p53 in differentiated cells and

the ability of cytoplasmic p53 to activate apoptosis in differenti-

ated cells treated with ABT-263. First, we found that a small frac-

tion of p53 was also localized to the cytoplasm in differentiated

cells (Figure 4E). Next, we differentiated hESCs silenced for

p53 and infected them with cytop53 and wtp53. Differentiated

cells expressing the exogenous wtp53 showed behavior similar
(F) Immunoblot of c-PARP, p53, and Oct4 in cells differentiated from p53shRNA

structs. Prior to infection, cells were differentiated with 1 mM RA and passaged, m

indicated, pretreated with 1 mM ABT-263 for 1 hr before NCS addition.

(G) The proximity of hESCs, unlike differentiated cells, to the apoptotic threshold

depicted as proximity to the cliff’s edge (the apoptotic threshold). A cell, shown a

from the edge if it is differentiated, where x2 > x1. Prior to damage, basal low levels

differentiated cell over the cliff. Damage causes p53 to accumulate in both hESCs

p53 pushes the cell toward the cliff is represented by the displacement y1 for th

sufficing to push the cell over the cliff, crossing the apoptotic threshold and lead

(y2 < x2), so p53 function is insufficient to push the cell beyond the apoptotic thr

See also Figure S2.
to that of their parental cells; they did not die after damage unless

treated with ABT-263 (Figure 4F). Interestingly, differentiated

cells expressing cytop53 also induced apoptosis after DNA

damage under ABT-263 treatment, showing that cytoplasmic

p53 is functional in differentiated cells, but lower mitochondrial

priming in these cells prevents the activation of apoptosis in

response to DNA damage.

In summary, we have shown that p53 exhibits similar

apoptosis-inducing behavior in both undifferentiated and differ-

entiated cells. However, differentiated cells are far from the

apoptotic threshold, and p53 is unable to overcome this barrier.

Only when the balance of proapoptotic to antiapoptotic proteins

is altered in differentiated cells can p53 push cells toward

apoptosis. In contrast, p53 can successfully push hESCs past

the apoptotic threshold due to their highly primed state

(Figure 4G).

DISCUSSION

A cell’s decision among different cell fates is especially critical in

response to challenging inputs such as DNA damage. Different

cell types meet this challenge in a variety of ways. In cell types

where maintenance of genomic integrity is crucial, such as

hESCs, one might expect that signaling pathways are poised

to cope with DNA damage aggressively by selecting terminal

cell fates such as apoptosis. Here we show that hESCs use mul-

tiple pathways to ensure apoptosis is induced after damage,

including activation of p53 transcription and cytoplasmic func-

tions and high mitochondrial priming. We have shown that in

hESCs p53’s transcriptional activity is not required to induce

apoptosis; rather, cytoplasmic p53 is sufficient for induction of

apoptosis without transcription of downstream p53 target

genes. Yet proapoptotic p53 target genes such as PUMA,

NOXA, and APAF1 are upregulated after damage in a p53-

dependent manner, suggesting that hESCs may use the p53

transcriptional pathway as a second line of defense to ensure

cell death in case cytoplasmic p53 fails to do so.

We have shown here that cytoplasmic p53 contributes to

induction of apoptosis in hESCs. However, the mechanisms by

which cytoplasmic p53 exerts its function remain open. A recent

study showed that hESCs maintain active Bax that rapidly local-

izes from the Golgi to the mitochondria after damage and

that this translocation is p53 dependent (Dumitru et al., 2012).

The role of p53 in generating the translocation of active Bax,

however, remains unclear. Interestingly, this mechanism was

employed to various extents by different hESC lines; the cell

line primarily used in our study, H1, did not show active Bax

under basal conditions (Dumitru et al., 2012). Yet we show
hESCs (p53sh) and, where indicated, infected with wtp53 and cytop53 con-

aintaining RA in the media. All cells were treated with NCS for 3 hr and, where

makes them sensitive to increased p53 after damage. Mitochondrial priming is

s a green ball, is at distance x1 from the edge if it is an hESC, and at distance x2
of p53, represented as a red cartoon, are insufficient to push either an hESC or a

and differentiated cells to similar levels, with similar functions. The distance that

e hESC and y2 for the differentiated cell, where y1 = y2. For an hESC, y1 > x1,

ing to cell death. In contrast, a differentiated cell is too far away from the edge

eshold, allowing the cell to survive after damage.
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here that H1 cells also undergo rapid apoptosis after DNA dam-

age, suggesting cytoplasmic p53 can trigger the same end result

via other mechanisms.

While we have shown that the levels of the antiapoptotic pro-

tein Bcl-2 and the proapoptotic protein Puma are consistent with

the high priming in hESCs in comparison with differentiated cells,

the complete network that determines mitochondrial priming is

likely to involve additional players. Even for apoptosis-regulating

proteins that show similar levels in undifferentiated and differen-

tiated cells (Figure 4C), specific modifications, localization, and

protein interactions might affect their function and therefore

generate differential priming. Furthermore, the relationship be-

tween priming and pluripotency might depend on other net-

works. For example, pluripotency is known to be linked to rapid

cell cycle progression (Filipczyk et al., 2007), which may directly

or indirectly affect the apoptotic machinery. Complete under-

standing of the mechanisms controlling priming will require

global analysis of protein function and interaction in multiple

pathways.

EXPERIMENTAL PROCEDURES

Standard procedures were followed for cell culture, flow cytometry, qRT-PCR,

immunoblotting, IF, and siRNA knockdown, as described in the Supplemental

Experimental Procedures.

Cell Line Construction

The p53shRNA construct with a blasticidin resistance cassette was kindly pro-

vided by the Agami lab (Brummelkamp et al., 2002). The cytop53 and wtp53

constructs are resistant to this p53shRNA due to silent point mutations

described in the Supplemental Experimental Procedures. The lentiviral vectors

for cytop53 and wtp53 were created using standard molecular biology tech-

niques to include an upstream ubiquitin promoter, p53, and an mVenus tag.

Point mutations for the K305A and R306A amino acid substitutions in the

NLS region of p53 for the cytop53 construct were introduced using site-

directed mutagenesis (Quikchange kit, Agilent). Further details regarding

primers, viral production, and infection are included in the Supplemental

Experimental Procedures.

BH3 Profiling

hESCs were dissociated with Accutase, counted, and suspended in DTEB

buffer (135 mM trehalose, 10 mM HEPES, 50 mM KCl, 20 mM EDTA, 20 mM

EGTA, 5mMpotassium succinate, final pH 7.5) at 2.673 106 cells/ml. The cells

were then added to an equal volume of 43 staining mastermix (4 mM JC-1,

40 mg/ml oligomycin, 20 mM 2-mercaptoethanol, 100 mg/ml digitonin in

DTEB buffer) and allowed to stain for 10 min at RT. 15 ml of stained cells

were added to wells containing 15 ml of peptides at 23 final concentration in

DTEB to yield the final profiling plate with 20,000 cells/well. Fluorescence at

590 nm was monitored using 545 nm excitation on a Tecan Safire 2 at a

controlled temperature of 30�C with automated readings every 5 min. The

area under each peptide response curve was calculated using Graphpad

Prism, and these areas were normalized to the internal FCCP and DMSO con-

trols as Depolarization (%) = 1 – ([sample-FCCP]/[DMSO-FCCP]).

SUPPLEMENTAL INFORMATION

Supplemental Information for this article includes Supplemental Experimental

Procedures and two figures and can be found with this article online at http://

dx.doi.org/10.1016/j.stem.2013.07.018.
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