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Abstract

Motivation: Cell microscopy datasets have great diversity due to variability in cell types, imaging

techniques and protocols. Existing methods are either tailored to specific datasets or are based on

supervised learning, which requires comprehensive manual annotations. Using the latter ap-

proach, however, poses a significant difficulty due to the imbalance between the number of mitotic

cells with respect to the entire cell population in a time-lapse microscopy sequence.

Results: We present a fully unsupervised framework for both mitosis detection and mother–daugh-

ters association in fluorescence microscopy data. The proposed method accommodates the diffi-

culty of the different cell appearances and dynamics. Addressing symmetric cell divisions, a key

concept is utilizing daughters’ similarity. Association is accomplished by defining cell neighbor-

hood via a stochastic version of the Delaunay triangulation and optimization by dynamic program-

ing. Our framework presents promising detection results for a variety of fluorescence microscopy

datasets of different sources, including 2D and 3D sequences from the Cell Tracking Challenge.

Availability and implementation: Code is available in github (github.com/topazgl/mitodix).

Contact: topazg@post.bgu.ac.il or rrtammy@ee.bgu.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Nowadays modern microscopes enable biologists to conduct obser-

vations on living cells throughout time. A main process of interest is

mitosis, in which a cell undergoes nucleus division (Alberts et al.,

2015). The study of mitosis has a substantial impact on many bio-

medical fields such as microbiology and cancer research (Dogra

et al., 2017; Hein et al., 2017). Thanks to the ongoing development

in acquisition techniques and storage devices, the available datasets

are large and diverse, which makes manual annotation impractic-

able. Thus, there is a demand for robust automatic tools, that can

provide reproducible objective results (Zimmer et al., 2006).

Developing generally applicable frameworks for mitosis detec-

tion is challenging due to the huge variability in cell appearance

caused by the differences in datasets, the chemical compounds used

and the microscopy imaging technique. Cells’ dynamics can there-

fore provide a significant cue for mitosis detection. Numerous meth-

ods exploit time-lapse microscopy dynamics and use cell tracks to

detect cell divisions. In the work of Thirusittampalam et al. (2013),

a mother cell is associated with only one of the daughter cells, after-

wards performing backward tracking to connect the two daughters

with the mother cell. In Arbelle et al. (2018) an appearance of a new

cell, which is not located at the frame’s edge, implies a possible mi-

totic event. Huh et al. (2012) suggest a tracking-based method for

free-floating cells based on Hidden Conditional Random Fields.

A drawback of these methods is that the success of mitosis detection

greatly depends on the tracking performance. Moreover, an
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excessive computational complexity is required, when the purpose

of the analysis is limited to the study of cell divisions, e.g. detection

of changes in proliferation rate related to mitosis bursts (Sullivan

and Epstein, 1963) or mitotic waves (Vergassola et al., 2018), which

may not necessarily require (to some extent) individual cell tracking.

As the appearance of dividing cells may change dramatically,

most current approaches use supervised machine learning (ML)

algorithms to detect mitotic events based on the visual and temporal

traits. In these works feature selection is followed by a trained classi-

fier (Li et al., 2010; Liu et al., 2012; Tashk et al., 2015). In the work

of Tonti et al. (2015) an unsupervised approach is designed based

on textural features of a specific dataset using k-means clustering.

These methods are designed for specific cell types, usually based on

a carefully selected set of distinguishing features and therefore may

not apply to general cases. Other supervised ML approaches use im-

plicit features (Liu et al., 2017a; Wan et al., 2017). Neural

Networks (NN) enable learning the features directly from the data.

In the context of mitosis detection, many NN-based algorithms are

designed for the public datasets for histologic tumor grading of

breast cancer: AMIDA13 (Veta et al., 2015), MITOS (Roux et al.,

2013) and MITOS–ATYPIA (Roux et al., 2014). Unlike those

single-image datasets, time-lapse microscopy sequences include cell

dynamics, which is a plausible feature in mitotic detection. While

the works of Nie et al. (2016) and Chen (2016) do incorporate the

temporal domain, hundreds of annotated mitotic events for training

are required. Recently, Phan (2018) suggested an unsupervised

learning method based on an NN architecture applied to phase-

contrast microscopy images. The network outputs irregularities in

the dataset, followed by clustering to extract mitotic cells. While

being an interesting approach, the fact that mitotic events localiza-

tion is based on pixel-level intensity enhancement limits its

applicability.

Unlike supervised and other unsupervised ML techniques, the

proposed contribution does not rely on labeled data, nor is it tail-

ored to a specific fluorescence-microscopy dataset. Considering sym-

metrical cell divisions, the proposed fully unsupervised framework

exploits daughters’ similarity as a common trait. This key concept is

generally applicable, given that the daughters are captured at the

Anaphase stage, after the Deoxyribonucleic acid material divides,

where the two daughter cells are approximately identical. Mother–

daughters association is accomplished by encoding cells’ neighbor-

hood via stochastic Delaunay triangulation and candidate triplet as-

sociation optimized via linear programing.

The rest of the paper is organized as follows: the main contribu-

tions of the proposed approach are outlined in Section 3. The

method is further detailed in Section 2, where we present two bio-

logically driven key elements on which it is founded: division sym-

metry (daughters’ similarity) and mother–daughters dissimilarity. In

addition, we introduce a stochastic variant of the Delaunay triangu-

lation to detect spatially neighboring cells and an integer program-

ing formulation for global frame optimization. Implementation and

experiments are presented in Section 4. Concluding remarks and

suggestions for future work are given in Section 5.

1.1 Proposed approach
The challenge of unsupervised mitosis detection is addressed using

three modular stages: First, mitotic cell candidates are identified

based on local spatio-temporal intensity differences. Second, candi-

date daughters are examined using symmetry estimation. Third,

mother–daughters association is performed by solving an integer

programing optimization problem.

In a previous work symmetry has been exploited to detect mitot-

ic events (Gilad, 2015). The proposed framework presents three,

additional main contributions: First, we define a similarity measure

that incorporates sensitivity to dynamic range differences between

cells’ instances. This measure is calculated using a vector form for

the weighted Pearson correlation coefficient (see Section 2.3). We

employ it for both symmetry estimation (Section 2.5) and spatio-

temporal dissimilarity identification. Second, we suggest a stochastic

version of the Delaunay triangulation to address possible ambigu-

ities (Section 2.4). The proposed triangulation is used for neighbor-

hood cells calculations when pairing candidate daughter cells.

Third, we formulate the constraint of a linear programing optimiza-

tion problem to match pairs of cells in one frame to a single cell in

the previous frame and use it to find a frame-wise optimal solution

of both daughter-pairing and mother–daughters associations (see

Section 2.7).

Consider the pairs of consecutive frames, displayed in Figure 3;

each row is showing a mitosis event of a different cell type acquired

at a different frame rate. The proposed algorithm accommodates the

difficulty of the diversity in cell visual and temporal features without

making a specific assumption on the shape or the texture of a

mother cell. Moreover, as opposed to many algorithms, it does not

require user-annotated data. Instead, as the majority of cells under-

go symmetrical divisions, mitosis is detected based on daughter cells

similarity right after the division. Using symmetry for mitosis detec-

tion has been suggested in Li et al. (2010), and applied to elongated

cells. Nevertheless, the symmetry axis was determined based on the

major axis of the mother cell, which is generally not as pronounced.

In contrast, the proposed framework is based on our observation

that the symmetry axis is orthogonal to the virtual straight line that

connects the centroids of the two daughter cells.

We demonstrate the applicability of the method proposed for 2D

and 3D fluorescence microscopy sequences for cells undergoing

symmetric divisions. Specifically, we use publicly available data of

the Cell Tracking Challenge: http://www.celltrackingchallenge.

net—i.e. Fluo-N2DL-HeLa, Fluo-N2DH-SIMþ and Fluo-N3DH-

SIMþ (Ma�ska et al., 2014; Ulman et al., 2017) and private datasets

including MCF-10A (Kamentsky et al., 2011) and Retinal

Pigmented Epithelial (RPE) cell sequences. Given that most cell divi-

sions are symmetric, daughters’ similarity is a key element of the

proposed approach and therefore aberrant division events cannot be

properly handled. Accounting also for mother–daughters associ-

ation, clustered cells that cannot be readily separated cannot be

grouped as mitotic triplets using our method. While the underlying

assumptions may appear to be restrictive, we note that our method

is fully unsupervised and does not require labeled training data or

any training process. Moreover, we used the same set of parameters

in all experiments. Promising mitosis detection results were obtained

for the different fluorescence microscopy datasets and for different

temporal and spatial resolutions of the sequences, in particular the

ability to enhance a tracking-based approach is shown.

2 Materials and methods

2.1 Overview
We aim to detect mitotic events in a completely unsupervised man-

ner, without parameter tuning while accommodating a variety of

fluorescence microscopy datasets. Instead of using annotated mitosis

examples, the following assumptions are made: (i). Mitotic events

are characterized by spatio-temporal intensity differences. (ii) Only

symmetric cell divisions are addressed. (iii) Cell segmentations or
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alternatively cells’ centers of mass (COMs) are provided. In the lat-

ter case, cell segmentation can be approximated, for example by a

disk given the cells’ average radius.

The general flow of the proposed mitosis detection framework is

displayed in Figure 1. The input to the algorithm is a fluorescence

microscopy frame sequence (Fig. 1a) and the respective cells’ seg-

mentations (or cells’ COMs). Input frames are partitioned into

patches (see Supplementary Appendix Section A1 ), centered at the

cells’ COMs (calculated based on the input segmentation), and

paired with the spatially corresponding patch in the consecutive

frame. The proposed algorithm is based on the following stages:

• Mitotic candidates identification (Fig. 1b): The first stage is

founded on patch-based spatio-temporal intensity differences

indicating cells that undergo some visual change between two

consecutive frames. Rather than setting a manually tuned thresh-

old on the dissimilarity measure (see Section 2.3) between pairs

of image patches, we look at the dissimilarity distribution (i.e.

normalized histogram) and use the Otsu (1979) method to set

the threshold automatically. This is made possible since the dis-

tribution appears to be bi-modal, roughly distinguishing between

mitotic and non-mitotic cells. Note that at this preliminary stage

we can accept false positives (e.g. patches that are subject to sig-

nificant temporal changes due to exceptional cell dynamics) but

false negatives (missed true mitotic cells) directly decrease the

final performances. Nevertheless, this filtering step is essential as

the following steps are computationally expensive and should

not be applied to the entire population.
• Neighborhood association (Fig. 1c): Next, we use a stochastic

version of the Delaunay triangulation, as introduced in Section

2.4, for the construction of mother–daughters triplets based on

spatial proximity of mothers and daughters.
• Daughters’ symmetry evaluation (Fig. 1d): We use the dissimilar-

ity measure defined in Section 2.3 to evaluate daughters’ sym-

metry, following symmetry axis extraction presented in Section

2.5.
• Clustering analysis (Fig. 1e): We then consider mother–daughters

dissimilarity and daughters similarity and perform clustering

analysis (see Section 2.6). This step, as before, is done in an un-

supervised manner, providing for each triplet the estimated likeli-

hood to be a mitotic event.

• Mitotic events selection (Fig. 1f): Finally, we solve an integer

programing problem to discard contradicting triplets (a daughter

cell with two mothers, etc.), as detailed in Section 2.7. The

output consists of birth frame number, centroid of the mother

and daughter cells and the estimated confidence of each

mitotic event.

The key concepts of the suggested algorithm are presented in the

following section.

2.2 General notations
We denote the input sequence of intensity gray level microscopy

images by fItgT
t¼1; where T is the total number of frames in the input

sequence, It : Xt ! R is the image related to frame t and Xt is a 2D

image domain. We assume that the binary segmentation of each

frame It is given and denoted as follows: Lt : Xt 7!f0;1g where ‘0’ is

assigned to background pixels and ‘1’ to cell pixels. We denote by

ct;i the ith cell instance in frame t, where i ¼ 1; . . . ;Ct and Ct is the

total number of cells in that frame. We define by xt;i � Xt the do-

main of the bounding box of ct;i:

2.3 Similarity measure
We use a weighted form of the Pearson correlation coefficient simi-

larity measure (Abdullah, 1990; Pearson, 1895) for mitotic candi-

date identification via temporal patch-based dissimilarity and for

evaluation of daughter cells’ similarity. To roughly align the two

compared cell patches, similarity transformation (rotation and

translation) prior to the calculation of the correlation coefficients is

applied. In addition, the contribution of each pixel to the measure’s

calculation is weighted to reduce the influence of background pixels,

in particular those related to neighboring cells.

For simplicity we omit the subscript t, which denotes the time

index. Let y1; y2 2 R
N be vectorized forms of two image patches,

where N is the number of pixels in a patch. We denote by wT 2
ð0;1ÞN the corresponding weight vector such that: wTw ¼ 1: The

covariance is calculated as:

Cvi;j¢Covwðyi; yjÞ ¼ yT
i Wyj; (1)

where the matrix W is constructed s.t. the weight vector w is its di-

agonal and its non-diagonal entries are zeros.

Fig. 1. Block diagram of the general flow of the proposed framework. (a) Input includes a fluorescence microscopy frame sequence and the respective cells’ seg-

mentations or cells’ COMs). (b) Each frame is partitioned into patches based on the cells’ COMs. Initial mitotic cells candidates are extracted based on spatio-tem-

poral difference between corresponding, consecutive frame patches (Section 2.3). (c) For each candidate mother, potential daughters are paired according to

neighborhood encoded via Stochastic Delaunay triangulation (Section 2.4). (d) Symmetry axis is retrieved for each pair of candidate daughters and similarity be-

tween them is calculated (Section 2.5). (e) Based on daughters’ similarity and mother–daughters’ dissimilarity, clustering analysis is performed to assign for each

mitotic candidate triplet the probability to be a true mitotic event (Section 2.6). (f) Integer programing optimization is used to filter-out contradicting mitosis candi-

dates (Section 2.7). (g) The output consists of birth frame number, centroid of the mother and daughter cells and the estimated probability (indicating uncertainty)

of each mitotic event (Color version of this figure is available at Bioinformatics online.)
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The correlation coefficient is therefore:

Cw
1;2¢Corrwðy1; y2Þ ¼

Cv1;2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cv1;1Cv2;2

p : (2)

Note that since our case is mono-modal, two cell images should

have the same intensity scaling to be considered similar. We, there-

fore, use the reflective correlation, where the samples are not cen-

tered. To increase the penalty for intensity scaling differences, we

also use the ratio between the images’ weighted expectations. We

define the weighted mean lw
i , where i ¼ 1, 2, as follows:

lw
i ¼ wTyi: (3)

The ratio is therefore:

Mw
1;2¢minðlw

1 ;l
w
2 Þ=maxðlw

1 ; l
w
2 Þ: (4)

Image intensity can be attributed to cells’ chromatin, which is

being labeled in the datasets used. Thus, considering the intensity

ratio has also a biological incentive since chromatin-bound or dif-

fused fluorescent proteins distribute to the two daughter cells upon

division (Downey et al., 2011).

We define the similarity measure as follows:

sw
1;2¢pðy1 ¼ y2jwÞ ¼

1

2
ðCw

1;2 þ 1Þ �Mw
1;2: (5)

Note that the range of a correlation coefficient is ½�1;1�. In

mono-modal cases, negative correlation corresponds to strong asym-

metry. Cw
1;2 is calculated according to Equation (2). Mw

1;2 is calcu-

lated as in Equation (4).

In Gilad (2015) Gaussian weights were used. We now suggest

a more informative weighting that incorporates the shape prior.

A straightforward choice for a shape prior would be the input binary

segmentation L, which partitions the image domain into two classes:

cell pixels xc � X and background pixels xb ¼ X n xc: Assuming

uncertainty of L; we use H : X7!½0;1�N to map the image pixels to a

probabilistic space.

Consider a pixel x ¼ ðx; yÞ 2 X as a random 2D vector.

Assuming equal a priori probabilities, since no a priori knowledge

exists, we define the log likelihood ratio decision boundary:

uðxÞ¢ log
pðx 2 xcÞ

pðx 2 X n xcÞ
>xc

< xb

0: (6)

The above decision rule achieves maximal a posteriori probabil-

ity according to Bayes, for known conditional probability function

pðx 2 xcÞ and equal a priori probabilities. The resulting probability

map is:

H
�
uðxÞ

�
¢pðx 2 xcÞ ¼ 1þ exp �uðxÞ

e

� �� ��1

; (7)

where e defines the uncertainty. In the spirit of Pohl et al. (2006)

and Riklin Raviv et al. (2010), the decision rule in Equation (6) is

estimated by a sign distance function (SDF). This is analogous to an

approximation of the conditional density function based on

Euclidean distance from the cells’ boundary. Denote the boundary

of cell ci segmentation as @xi 2 X. The SDF uiðxÞ : X7!R associated

with the binary segmentation of the ith cell is defined as follows:

uiðxÞ ¼ f
dðx; @xiÞ x 2 xi

�dðx; @xiÞ x 2 X n xi
; (8)

where dðx; @xiÞ is the minimal Euclidean distance between a pixel x

and a boundary pixel. The weight vector wi that is used for the

weighted correlation calculation in Equation (2) is defined by HðuiÞ
normalized s.t. wi

Twi ¼ 1: The process is illustrated in Figure 2.

2.4 Neighborhood association via Delaunay

triangulation
We assume that mitosis daughter cells are adjacent and symmetrical

to one another right after separation. In this section, we will define

the concept of neighborhood between candidate daughter cells.

Daughters’ symmetry is addressed in the following section.

To define pairing between candidate daughter cells, we represent

each frame by a sparse graph, where the nodes are defined by cells’

COMs and the edges are defined by our stochastic version of the

Delaunay triangulation (Delaunay, 1934). Candidate daughter cells

are connected via an edge.

Encoding local cells’ neighborhood connections using triangula-

tion was previously suggested in several cell tracking algorithms (Li

et al., 2010; Liu et al., 2010, 2011, 2016, 2017b; Thirusittampalam

et al., 2013), mainly for its stability in the presence of cell migration

and division (illustrated in Supplementary Appendix Fig. A3a).

Moreover, triangulation does not require prior knowledge regarding

the number of neighbors as in k-Nearest Neighbor.

The Delaunay triangulation is defined s.t. no node is inside any

triangle circumcircle. The obtained diagram maximizes the minimal

angle of all triangles (de Berg et al., 2008); thus the triangles tend to

equiangularity. Therefore, narrow thin (sliver) triangles are avoided

and local structures are achieved. This implies that changes in the

nodes have local influence. This property is especially important

when encoding live cells’ positions.

Nevertheless, the Delaunay triangulation is ambiguous when

more than three points (nodes) lie on the same circle. In these cases

possible ‘true’ edges could be missed and the entire constellation is

sensitive to noise. To address this limitation we suggest a stochastic

version of the triangulation. The triangulation is recalculated in an

Fig. 2. Weights matrix—fuzzy segmentation: (a) Gray level intensity image.

(b) Binary segmentation. (c) SDF of the binary segmentation presented in (b).

(d) Probability map (Color version of this figure is available at Bioinformatics

online.)

Fig. 3. Cell division in two different datasets: Each row displays time-lapse im-

agery of a cell division from a different dataset: (a) Fluo-N2DL-HeLa cells

(Ulman et al., 2017), (b) MCF-10A cells courtesy of Albeck & Brugge. Frame

number is shown at the bottom left of each image
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iterative manner, where at each iteration the COMs are perturbed

by an additive noise with a truncated Gaussian distribution. The

additive noise reflects the uncertainty of the cell’s COMs due to seg-

mentation inaccuracy. It is set such that the distance between the

original and the perturbed COM is smaller than the distance be-

tween neighboring COMs. For further details refer to the

Supplementary Appendix. The final set of edges in the resulting

graph is the union of all edges found in each of the iterations. This

reduces the number of mis-detected edges. Supplementary Appendix

Figure A3b illustrates the scenario, where the resulting new edges are

marked in red. More details including assessment of the algorithm’s

convergence can be found in Section B in the Supplementary Appendix.

2.5 Symmetry axis extraction
Daughter cells are assumed to have bilateral symmetry right after

division. We expect that if such symmetry exists, the symmetry axis

is perpendicular to the straight line that connects the COMs of the

candidate daughter cells and intersects its center. Let us consider a

sub-image It;i;j : xt;i;j 7!R, where xt;i;j � Xt contains the pixels of

both candidate daughter cells ct;i and ct;j in frame t. To test sym-

metry, we wish to align the sub-image’s main axis (w.l.o.g. the hori-

zontal axis) with the potential symmetry axis. We start with rotating

the sub-image according to the cells’ COMs. However, recall that

we cannot assume that the input segmentation, and therefore the re-

spective COMs, are accurate. We therefore further adjust the align-

ment in the spirit of Riklin Raviv et al. (2009) as follows. For

simplicity we omit the t, i, j indexing. Let us denote by h ¼
ðh1; h2; h3ÞT ¼ ðsx; sy; aÞT the vector of translation ðsx; syÞ and rota-

tion angle a of the similarity transformation matrix Rh.

Our aim is to find the transformation parameters h that minimize

the loss between the 2D image matrix I and its symmetrical counter-

part Iud, which is obtained by up–down reflection. Let us denote by

y and yud the vector representation of I and Iud; respectively. Let yud

and Thy be the vectorial representations of Iud and the matrix

obtained following transformation of the original sub-image I by

Rh; respectively. We use the weighted mean square error as our loss

function:

Lðyjw; hÞ ¼ ðyud � ThyÞTWðyud � ThyÞ; (9)

where the matrix W is constructed s.t. the weight vector w (see

Section 2.3) is its diagonal and its non-diagonal entries are zeros.

Our objective is to solve the following constrained optimization

problem:

ĥ ¼ argminLðyjw; hÞ
hs:t:hk2½ak ;bk �

; (10)

where ½ak; bk�; k ¼ 1; . . . ;3 defines the valid range of transformation

parameters (based on cell size and other factors), as detailed in the

Supplementary Appendix. As shown in Riklin Raviv et al. (2009),

the orientation of the symmetry axis with respect to the coordinate

system of I is ĥ=2: This concept is illustrated in Supplementary

Figure Appendix A1. We next calculate the similarity [based on

Equation (5)] between the daughters’ sub-images, obtained by a re-

flection along the retrieved symmetry axis, followed by bicubic

interpolation.

2.6 Mother–daughters associations
Candidate mitotic event is defined by a triplet of a candidate mother

cell in frame t � 1 and a pair of candidate daughter cells in frame t.

Each candidate event is represented by two features: candidate

daughters’ symmetry and mother–daughters’ similarity. The first

feature, i.e. the likelihood that two cells are mitotic daughters, is cal-

culated using the similarity measure from Equation (5) following the

process described in Section 2.5. Mother–daughters’ similarity

Sm;1;2 is calculated as follows:

Sm;1;2¢maxðs1;m; s2;mÞs1;2;m; (11)

where si;m; i ¼ 1; 2 are the similarity measures between the candi-

date mother and the ith daughter, calculated according to Equation

(5) and s1;2;m is the similarity between the patch consisting of both

daughters and the candidate mother patch. The second similarity

addresses over-segmentations in which one cell is erroneously seg-

mented as two.

The mitotic cluster is assumed to be normally distributed in the

constructed 2D feature space. This assumption is assessed empirical-

ly; see for example Figure 6. Let V0, V1 denote the mitotic and non-

mitotic clusters, respectively. We use the Expectation Maximization

algorithm (Dempster et al., 1977) to find the distribution parameters

ðlk;RkÞ;k ¼ 0; 1 and the a priori probabilities Pk: The cluster with

highest average value of the daughters’ symmetry feature is chosen

as the mitotic cluster.

The feature vector of the ith mitotic candidate is denoted by vi:

The a posteriori probability is estimated based on the mitotic cluster

membership of the feature vector (Bezdek and Dunn, 1975; Gath

et al., 1989):

li¢pðV0jvi; lk;Rk;PkÞ ¼
ðd0;iÞ�1

P1
k¼0 ðdk;iÞ�1

; (12)

where, dk;i is the exponential distance:

dk;i¢
1

Pk
jRkj1=2 exp

1

2
ðvi � lkÞTR�1

k ðvi � lkÞ
� �

: (13)

A cell instance ct;i cannot be simultaneously a mother of a mitot-

ic event in frame t þ 1 and a daughter of another event in frame t.

Such contradictions are resolved by selecting the candidate triplets

that are most probable.

2.7 Mitotic decision using integer programing
The feature space of mitotic candidates holds contradicting hypothe-

ses. Given a set of candidate mitotic events associated with a frame

t, we look for an optimal subset, subject to the following con-

straints: (i) Each cell in frame t � 1 can be a mother of a single mi-

totic event in frame t at most. (ii) Each cell in frame t can be a

daughter of a single mitotic event at most. (iii) The number of mitot-

ic events in a single frame should be limited.

To meet these constraints we generalize the binary integer pro-

graming optimization problem (Nemhauser and Wolsey, 1989) to

associate a pair of items in one group with a single item in another.

Integer programing was previously suggested for one-to-one cell as-

sociation (as in Li et al., 2010; Merouane et al., 2015) for non-

mitotic cells. We define the likelihood vector by l ¼ ðl1; . . . ; lQÞT ,

where lj is the likelihood of the jth candidate in frame t [see

Equation (12)], and Q is the total number of candidate triplets in

the frame. We wish to solve the following optimization problem:

q̂ ¼ argmax
q

lTqs:t:q 2 f0; 1gQ;Aq � b; (14)

where q is an indicator vector, i.e. its jth entry equals 1 if the jth can-

didate is chosen. Let KD, KM be the number of candidate daughters

in frame t and candidate mothers in frame t � 1; respectively. We set

K ¼ KD þ KM: The vector b ¼ ðb1; . . . ; bKÞT is constructed, s.t. each
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cell can be part of a single candidate triplet at most, thus

bk ¼ 1; 8k. We construct the matrix A 2 f0;1gK�Q; s.t. each col-

umn j represents the triplet (mother and daughters) that defines the

jth mitosis candidate. The ith row in A represents all candidate trip-

lets in which cell i takes part. Specifically, denote the jth triplet by

ðct;d
j
1
; ct;d

j
2
; ct�1;mj Þ, where ðdj

1; d
j
2Þ are the indices of the jth candi-

date’s daughters and mj is the index of the candidate mother cell.

The matrix element ½A�ij is set as follows:

½A�ij ¼
1; i ¼ dj

1or i ¼ dj
2; 1 � i � KD

1; i ¼ mj þKD; KD < i � K
0; otherwise

:

8><
>: (15)

Note that A is constructed s.t. each column sums to 3. An ex-

ample illustration is available in the Supplementary Appendix.

3 Experiments

3.1 Datasets
We tested our method on different time-lapse fluorescence micros-

copy datasets (2D and 3D). The cells’ image sequences were

acquired with either nucleus labeled by iRFP fused to NLS (nuclear

location signal) or fluorescent protein fused to histone H2B. Data in-

clude the publicly available Cell Tracking Challenge datasets: http://

www.celltrackingchallenge.net detailed in (Ulman et al., 2017):

Fluo-N2DL-HeLa and the synthesized Fluo-N2DH-SIMþ and Fluo-

N3DH-SIMþ (Svoboda and Ulman, 2017) datasets, as well as pri-

vate datasets: MCF-10A and RPE cells immortalized with overex-

pression of telomerase. Further details on the different image

sequences such as the number of frames, frame rate and average

number of cells per frame are presented in Table 3.

3.2 Evaluation measures
We quantitatively evaluated the proposed algorithm using for all

datasets, except for the simulated ones, manually annotated mitosis

events, considered as Ground Truth (GT). Since Fluo-N2DH-SIMþ
and Fluo-N3DH-SIMþ are computer-generated image data, their

annotations were inherently provided by a simulation system. We

note that the Fluo-N2DL-HeLa, Fluo-N2DH-SIMþ and Fluo-

N3DH-SIMþ datasets are originally intended for the Cell Tracking

Challenge and not for the specific task of mitosis detection. We,

therefore, could only evaluate our method on their publicly available

training sets. Since our method is fully unsupervised we could use

the training set for testing.

Let a GT mitosis event be defined by the ‘birth’ frame t0 and the

COMs of the GT mother x0m and daughters ðx0d1
; x0d2
Þ: A true positive

(TP) detection is defined as a candidate in frame t that meets the cri-

teria in Equation (16), where the triplet candidate COMs are

ðxm; xd1
; xd2
Þ.

jt0 � tj � 1
k x0l � xl k� R; l ¼ d1; d2;m

:

	
(16)

R is average cell radius calculated based on input segmentation.

Note that the TP criteria [Equation (16)] require both spatio-

temporal localization of the mitotic event and a correct association

between mitotic mother and the pair of daughters. Detections that

do not meet these strict criteria are considered False Positive (FP).

Each candidate can only be assigned to one GT event and each GT

event is only detected once. If more than a single candidate triplet

meets the criteria in Equation (16) for the same GT event (two adja-

cent mitotic candidate events), the one with the highest likelihood

[Equation (12)] is considered TP and the others FP. Undetected

mitosis events are defined as False Negatives (FN). All other events

are defined as True Negatives (TN). To measure and compare detec-

tion performance we use the following golden standard metrics:

True Positive Rate (TPR, also known as recall), Precision (P), False

Positive Rate (FPR) and F1 score:

TPRðrÞ ¼ TPðrÞ
TPðrÞ þ FNðrÞ ; PðrÞ ¼ TPðrÞ

TPðrÞ þ FPðrÞ
F1ðrÞ ¼ 2

TPRðrÞ � PðrÞ
TPRðrÞ þ PðrÞ ; FPRðrÞ ¼ FPðrÞ

FPðrÞ þ TNðrÞ

;

8>>><
>>>:

(17)

where r defines an operating point. The F1ðrÞ score corresponds to

the branching correctness (BC) measure, defined and used in (Bise

et al., 2011; Magnusson et al., 2015; Ulman et al., 2017) with time

interval of one frame. The measure maxF1¢maxðF1ðrÞÞ is used for

results assessment as well. In addition, we examine stability in per-

formance over a range of possible operating points using the

Receiver Operating Characteristic (ROC) graph (Powers, 2011) and

calculating the area under the ROC curve (AUC). We note that the

operating point for the initial stage of mitotic candidates identifica-

tion is calculated automatically using Otsu (1979).

3.3 Experimental results
To assess the proposed method the following experiments were con-

ducted: We first compared the proposed mitotic candidate identifi-

cation phase with an alternative, principle component analysis

(PCA) approach for detecting mitotic events as outliers, adapted

from Jablonski et al. (2015). Next, we demonstrated the clustering

obtained based on the candidate daughters’ symmetry and mother–

daughters’ dissimilarity (Fig. 6). Mitotic detection results are then

presented (Table 2). In addition we tested the robustness of the pro-

posed algorithm to different temporal and spatial resolutions of the

data, its sensitivity to the accuracy of cell segmentation, and a com-

parison to a tracking-based algorithm. Implementation details are

available at the Supplementary Appendix.

4.3.1 Mitotic candidates identification

We evaluated the preliminary stage of mitotic candidates identifica-

tion by constructing precision w.r.t. TPR and ROC plots, based on

the similarity [Equation (5)] between consecutive corresponding

image patches. For comparison, we used PCA of the patches to de-

tect spatial anomalies that may indicate phenotypic appearance of

mitosis. Figure 4 displays the ROC plots and the precision w.r.t.

TPR (red-ours, blue-PCA) for the Fluo-N2DL-HeLa02 sequence.

The ROC’s operating point is determined by the Otsu threshold pre-

sented as the dashed green line in Figure 5. The AUC is the area

under the ROC curve. maxF1 scores are the maximal F1 scores

obtained for each of the methods, using Equation (17). Figure 5

presents a patch-based histogram of temporal similarity for the

Fluo-N2DL-HeLa02 sequence. The true mitotic events are marked

in red (versus blue). The threshold (dashed green line) is set automat-

ically using the Otsu (1979) method. We note the approximately

bi-modal distribution of mitotic versus non-mitotic cells and the sig-

nificantly lower number of below-threshold instances. The temporal

intensity differences appear to be a significant cue, probably since

the diffused fluorescent proteins or mother’s chromatin (labeled in

the analyzed data and manifested by enhanced image intensities) is

distributed between its two daughter cells. The alternative PCA ap-

proach may be useful for non-fluorescence data. The AUC values

and the maxF1 scores for each of the tested datasets are presented in

Table 1, showing the advantage of the proposed approach.

Application of two-sample Kolmogorov–Smirnov test to the F1
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scores have shown a statistically significant difference (P-values

< 5%) for the compared sequences.

3.3.2 Mitotic events clustering

Associating mother–daughters triplets, each candidate event is repre-

sented by two features: daughters’ symmetry and mother–daughters’

similarity. Figure 6 illustrates candidates scatter in this 2D features

space for the HeLa01 sequence. The TP population, characterized

by high daughters’ similarity and low mother–daughters’ similarity

forms a condensed, approximately normally distributed cluster in

the upper-left corner of the 2D plot.

3.3.3 Mitotic detection and mother–daughters association

Table 2 presents final results, including mother–daughters associ-

ation performances. The measures are reported for the operating

points that were set based on the thresholds calculated in the outlier

detection stage (see Section 4.3.1). Even though there exists a signifi-

cant imbalance between the number of mitotic events and the entire

cell population, our algorithm displays high specificity. Moreover,

although the algorithm is fully unsupervised with no manually tuned

parameters, applicable sensitivity is demonstrated. Considering 3D

data, we made the assumption that the cells divide in the x–y plane.

While this assumption allows reduction of registration complexity,

it may introduce errors. In general, for all datasets, we note that

when a triplet contains a true mother and daughter and another false

daughter—this type of error is counted twice, both as a false positive

and false negative. Some of the other errors are due to over- or

under-segmentation or when cells are missed completely due to low

contrast with the background. Qualitative mitosis detection results

are demonstrated in the videos that can be accessed using the link in

https://github.com/topazGl/Mitodix.

3.3.4 Robustness to segmentation quality

A main assumption in this framework is that the image sequences

are provided along with cells’ segmentation, or, at least, cells’

COMs. To test the robustness of our method with respect to the ac-

curacy of the segmentations, we replaced the binary segmentation

mask that properly extracts cell boundaries with elliptical disks, cen-

tered at the respective cells’ COMs and having similar scales.

Results for the HeLa01 are reported in Table 2, see HeLa-disks.

Note that the differences in all reported measures with respect to the

Hela01 results with the complete segmentations (Fluo-N2DL-

HeLa01) in Table 2 are negligible. We note, however, that cases in

which two cells are mistakenly merged into a single connected com-

ponent, or a single cell is labeled by two connected components,

may degrade the performance significantly.

3.3.5 Tracking-based detection

We next conducted an experiment in which we show that the pro-

posed mitotic events’ candidates can be used as anchors in cell track-

ing algorithms and therefore can enhance cell-lineage analysis by

reducing the number of false positive detections (see Supplementary

Appendix Fig. A5). The last two rows in Table 2 present tracking-

based mitosis detection results for the HeLa01 train dataset

obtained by adapting the code of the FR-Ro-GE group, which par-

ticipated in the Cell Tracking Challenge (Ulman et al., 2017), to

Table 1. Initial mitotic mother candidates identification: reported

values are: (AUC/maxF1)

Dataset Ours PCA

AUC/maxF1 AUC/maxF1

MCF-10A 0.946 / 0.52 0.789 / 0.10

Fluo-N2DL-HeLa01 0.986 / 0.58 0.902 / 0.26

Fluo-N2DL-HeLa02 0.982 / 0.42 0.908 / 0.23

RPE-01 0.945 / 0.35 0.848 / 0.03

RPE-02 0.997 / 0.45 0.845 / 0.05

RPE-03 0.932 / 0.57 0.667 / 0.01

Fluo-N2DH-SIMþ01 0.930 / 0.61 0.800 / 0.15

Fluo-N2DH-SIMþ02 0.940 / 0.50 0.720 / 0.12

Fluo-N3DH-SIMþ01 0.940 / 0.76 0.790 / 0.26

Fluo-N3DH-SIMþ02 0.900 / 0.74 0.760 / 0.19

Note: AUC is the area under the ROC curve. maxF1 is the maximum F-

measure of all possible working points (thresholds). The comparison is be-

tween the proposed mitotic candidate identification, based on spatio-temporal

intensity differences and the PCA approach to detect outliers.

Table 2. Final mitotic detection performance: results of our algo-

rithm for the datasets detailed in Section 4.1

Dataset TP FP FN FPR TPR P F1

MCF-10A 38 2 19 2.77E-04 0.68 0.95 0.78

Fluo-N2DL-HeLa01 86 3 8 3.59E-04 0.91 0.97 0.94

Fluo-N2DL-HeLa02 167 27 42 1.09E-03 0.80 0.86 0.83

RPE1-01 17 4 2 4.47E-04 0.9 0.81 0.71

RPE1-02 15 4 3 6.62E-04 0.83 0.79 0.81

RPE1-03 27 4 3 6.57E-04 0.90 0.87 0.89

Fluo-N2DH-SIMþ01 20 0 8 0 0.71 1 0.83

Fluo-N2DH-SIMþ02 38 3 6 1.01E-0.3 0.86 0.93 0.89

Fluo-N3DH-SIMþ01 14 0 23 0 0.38 1 0.55

Fluo-N3DH-SIMþ02 23 0 17 0 0.58 1 0.73

HeLa01-Disks 82 3 12 3.59E-03 0.87 0.96 0.92

HeLa01-Trackinga 94 59 0 6.30E-03 1 0.61 0.76

HeLa01-Fusion 88 3 6 3.59E-04 0.94 0.97 0.95

Note: The above scores refer to both mitosis detection and mother–daugh-

ters association. RPE1-01 results are reported for 10-min sampling rate and

RPE1-02, RPE1-03 for 15 min. HeLa01-Disks refers to the proposed method

where cells’ segmentations are replaced with disks. HeLa01-Tracking refers

to a tracking-based mitosis detection of the adapted FR-Ro-GE method that

competed in the Cell Tracking Challenge. HeLa01-Fusion refers to the track-

ing-based detection using our mitosis candidates as anchors.

F1; F-measure; P; precision.
aHeLa01-Tracking refers to FR-Ro-GE and is not our method.

Fig. 4. ROC plots for identification of mitotic event candidates—Fluo-N2DL-

HeLa02 example. (a) ROC plots, (b) precision w.r.t. TPR plots. Both pairs of

plots are based on data extracted from the Fluo-N2DL-HeLa02 sequence and

obtained for the initial stage of mitotic candidates identification using the pro-

posed patch-based spatio-temporal dissimilarity (red) and PCA for outliers

detection (blue). The ROC’s operating point is determined by the Otsu thresh-

old presented as the dashed green line in Figure 5. The AUC is the area under

the ROC curve. maxF1 scores are the maximal F1 scores obtained for each of

the methods, using Equation (17) (Color version of this figure is available at

Bioinformatics online.)
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mitosis detection (termed here HeLa01-Tracking) and by integrating

the proposed mitotic events detection with the FR-Ro-GE tracking

(HeLa01-Fusion). The performances (in terms of FP and F1 scores)

of the combined approach are better than each of the methods separ-

ately. Supplementary Appendix Figure A5 visually presents false-

positive mitosis detection examples obtained using an adapted

version of the FR-Ro-GE code. For an additional (approximate)

comparison, the reader is referred to the F1 scores (BC measures) of

the top three challenge participant methods for the HeLa test dataset

reported in (Ulman et al., 2017).

3.3.6 Frame rate and spatial resolution influence

We next examined the influence of the frames’ spatial resolution

and the sequences’ temporal resolution on the mitosis detection per-

formances. Scores (TPR, precision and F1) for the two experiments,

were calculated for each of the three RPE1 sequences and were then

averaged. Figure 7a presents the results obtained for the RPE1

sequences, following spatial down-sampling (using bicubic interpol-

ation) by factors of 1:333; 2; 3; and 4 with respect to the original

spatial resolution. We note that the degradation in performances

due to downscaling is less significant than expected, possibly since

the downsampling functions as a low-pass filter, therefore increasing

the frames’ signal-to-noise ratio. Figure 7b presents the results

obtained for the RPE1 sequences, following temporal down-sampling

with respect to the original 5-min frame-rate sequence, simulating

frame rates of 10; 15; 20; 25; and 30 min. Note that there is a trade-

off between high-frame rate sequences that allow capturing mitotic

events right after division (when the daughter cells appear to be identi-

cal to each other) and low-frame-rate sequences in which the detected

branching (or splitting) points are not ambiguous.

3.3.7 Runtime

Table 3 presents the average run times per frame of the sequences

tested. We ran our experiments on i5-6600K, 3.5GHz CPU, 48 GB

RAM, 64-bit OS. Reported runtimes for RPE1 datasets are for the

full, original sequences acquired every 5 min with the original, full

spatial resolution. Reported numbers of cells are estimated based on

connected components analysis of the given input segmentations.

We note that the initial phase of patch extraction and mitosis candi-

dates identification takes around 90% of the runtime as it applied to

the entire population. Solving the integer programing optimization

problem takes less than 0.5% of the total runtime.

4 Conclusion and future directions

Mitotic cells are a minority with respect to the entire cell population.

This imbalance makes supervised mitosis detection techniques,

which require annotated data of both mitotic and non-mitotic

classes, impractical. The current work takes a different approach,

which is fully unsupervised, considering generally applicable spatial

and temporal features, characterizing mitosis in microscopy sequen-

ces. Specifically, we assume that most cell divisions are symmetrical

and are accompanied with local spatio-temporal differences.

The proposed algorithm achieves promising results for different

time-lapse fluorescence microscopy sequences and for different tem-

poral and spatial resolutions even though no annotated examples

were used and no parameters tuning was applied. Moreover,

Table 3. Average run times per frame, frame rate [fph] and spatial resolution for the sequences tested

Sequence MCF-10A HeLa01 HeLa02 RPE1(1) RPE1(2) RPE1(3) SIMþ2D(1) SIMþ2D(2) SIMþ3D(1) SIMþ3D(2)

#Frames 141 92 192 65 150 150 80

Frame size [pxls] 500 � 400 1100 � 700 1024 � 1024 628 � 690 739 � 773 639� 349� 59 652� 642� 59

Frame rate [fph] 3 3 12 2 2

Total number of cells 8178 9401 28265 19606 20442 20663 2594 3357 2830 3261

Avg cells per frame 58 102 307 102 107 108 40 22 19 41

Runtime per frame [sec] 24.91 120.9 421.0 35.45 33.26 32.46 31.42 24.19 18.0 65.22

Note: Reported runtimes for RPE1 datasets are for the full, original sequences acquired every 5 min with the original, full spatial resolution. Reported numbers

of cells are estimated based on connected components analysis of the given input segmentations. HeLa refers to Fluo-N2DL-HeLa dataset. SIMþ2D and SIMþ3D

refer to Fluo-N2DH-SIMþ and Fluo-N3DH-SIMþ, respectively.

Fig. 6. Clustering: Candidate mother–daughters triplets are ranked in an un-

supervised manner, based on the probability to be assigned to a mitotic

events cluster. Each candidate triplet is represented by two features. The

graph shows candidates scatter in the features space for the Fluo-N2DL-

HeLa01 sequence, where true events are marked in red and false are marked

in blue. Samples are clustered assuming multivariate normal distribution.

The equiprobability contours of the estimated mitotic cluster are illustrated

and color-coded, see color-bar on the right side (Color version of this figure is

available at Bioinformatics online.)

Fig. 5. Patch-based histogram of spatio-temporal similarity—Fluo-N2DL-

HeLa02 example. (a) Spatio-temporal similarity histogram of Fluo-N2DL-

HeLa02 consecutive corresponding image patches. The threshold (dashed

green line) is automatically determined using Otsu (1979) to minimize intra-

class variance. True mitotic events are marked in red, non-mitotic cells are

marked in blue. Candidate mitotic cells are those below the threshold. (b)

Zoom-in of the orange rectangle region shown in (a) (Color version of this fig-

ure is available at Bioinformatics online.)
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mother–daughters association does not relay on tracking. This is

accomplished via two contributions: stochastic Delaunay triangula-

tion to encode cells’ neighborhood and solving the two-to-one inte-

ger programing optimization problem to resolve contradicting

mother–daughters’ triplets. Being independent of frame-to-frame

cell association, the proposed mitosis detection framework can be

used to boost cell tracking algorithms, where the detected mitotic

events serve as anchors for track initialization and termination.

Moreover, mitosis detection by itself can be used for the study of

phenomena involving periodic and nonperiodic changes in prolifer-

ation rate.

We should note that there is no assumption made on the dimen-

sion of the data. The only adaptation required, when considering

3D frames, relates to the extraction of the daughters’ symmetry axis.

In the current framework we assumed planar cell division symmetry.

General cell division in the 3D space can be addressed by performing

3D similarity transformation between the daughter cells. Moreover,

there is no inherent limitation to fluorescently stained cell nuclei and

the algorithm can be applied to whole-cell stained data given that

the input segmentation accurately extracts both nucleus and cyto-

plasm and separates individual cells. While none of the underlying

assumptions particularly relates to fluorescence microscopy, the

labeling facilitates the detection process, highlighting differences

and similarities. Furthermore, the condition that each cell is correct-

ly represented by a single connected component cannot be fully sat-

isfied when cells’ boundaries cannot be easily distinguished.

Therefore, extension to other types of microscopy data acquisition,

such as differential interference contrast microscopy, requires fur-

ther study.

Analyzing sensitivity results reveals that in some cases, the same

true mitotic daughters are detected more than once. In other cases,

very similar adjacent non-mitotic cells are falsely detected. To ad-

dress both scenarios, future work would expand the proposed opti-

mization by taking into consideration the typical dynamics of cell

movement post-mitosis, such as the anti-correlation between sister

cells in their direction of motion.
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