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A new approach to monitoring both signaling over time and a global gene expression profile from the same
cell establishes a functional role for NF-kB dynamics in transcription.
Diverse dynamics have been observed

at the protein level and in localization

of transcription factors in response to

different stimuli (Behar and Hoffmann,

2010; Purvis and Lahav, 2013). How-

ever, the functions of these dynamics,

especially at the transcriptional level,

are unclear, mainly because it has

not been feasible to robustly measure

signaling dynamics and global gene

expression profiles in the same cell.

In this issue of Cell Systems, Lane

et al. (2017) design a novel integrative

approach, combining single-cell RNA

sequencing (RNA-seq) with live-cell

imaging to allow, for the first time,

the analysis of signaling dynamics

and transcriptomics from the same

single cell. The authors show on a

transcriptome-wide scale that different

NF-kB dynamics result in differential

activation of NF-kB targets. They also

provide evidence for mechanisms by

which transcription of different targets

could be synchronized. Beyond its

relevance to NF-kB, this study pro-

vides a new way to explore the func-

tional role of signaling dynamics in other

systems.

Researchers have long realized that

single-cell monitoring is required to un-

cover heterogeneity. Early studies took

advantage of advances in live-cell im-

aging and computational tools to watch

the dynamics of transcription factor

activation, as measured by the tempo-

ral fluctuations in protein levels or

localization (Lahav et al., 2004; Tay

et al., 2010). Later work showed that

these dynamic responses can even

vary between genetically identical indi-

vidual cells (Lee et al., 2009; Paek

et al., 2016). Such studies shed light
on the temporal and spatial dynamics

of transcription factor activation and,

in many cases, revealed mechanisms

by which different dynamics are

generated.

Associating signaling dynamics with

functional outcomes has been successful

when clear phenotypic differences be-

tween cells, such as differences in

apoptosis, proliferation, and differentia-

tion, were readily observable (Purvis and

Lahav, 2013). In contrast, associating dy-

namics with transcription is challenging

because population-based RNA-seq

techniques intrinsically mask cell-to-cell

variation.

In recent years, the development of

many single-cell RNA-seq technologies

has allowed unprecedented investiga-

tion of cellular heterogeneity in different

tissues, niches, and differentiation

stages (Habib et al., 2016; Tirosh et al.,

2016). Using fluorescence-activated

cell sorting to isolate single cells prior

to single-cell RNA-seq can reveal the

cell state and specific characteristics

at a given time prior to sequencing.

This method of separation, however,

cannot be utilized properly to address

the relationship between transcription

factor dynamics and the transcrip-

tome, due to the absence of temporal

information.

The transcription factor NF-kB is

an ideal candidate for studying the

relationship between transcription factor

dynamics and transcriptomics. Its dy-

namics depend on the type and strength

of stimulus (Nelson et al., 2004), and it

has been shown that single cells display

different dynamics even in response to

a single stimulus (Lee et al., 2009).

Whether or not this dynamical heteroge-
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neity translates to transcriptional hetero-

geneity remains unresolved. With this in

mind, Lane et al. (2017) integrated live

cell imaging with single-cell RNA-seq

(Figure 1). Although seemingly straight-

forward, this integration faced many

challenges.

First, the identity of a cell must be

maintained while it is being imaged and

sequenced, but these two measure-

ments are typically done on two

different, incompatible platforms. To

address this, the authors created a

new experimental protocol for a Fluid-

igm C1 microfluidics instrument to allow

rapid adherence of cells and treatment

with stimuli while cells are in the micro-

fluidics chip. The use of the Fluidigm

C1 chip is an elegant way to resolve

the integration challenge given the

ability to visualize the cells in the micro-

fluidic chip prior to processing them

for single-cell RNA-seq (Tay et al.,

2010). Additionally, the Fluidigm C1 is a

commercially available platform already

present in many institutions. Therefore,

for many researchers, this will provide

an almost off-the-shelf approach to

tackle similar problems.

In addition to the technical challenge,

integrating single-cell imaging and sin-

gle-cell RNA-seq data requires a sophis-

ticated bioinformatics pipeline. Analysis

of single-cell imaging data is relatively

labor intensive and time consuming.

Single-cell RNA-seq data contain a

high degree of noise and variability.

This poses a challenge for highly ex-

pressed genes because a difference in

expression of gene X between cells that

have similar NF-kB dynamics might be

real or might be a result of inter-sample

variability. In addition, lowly expressed
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Figure 1. Yin and Yang: Integrating Live Imaging with
Transcriptomics to Make Single Cells Whole
Combining live-cell imaging with single-cell RNA-seq allows researchers to
develop a comprehensive understanding of cellular responses. Here, Lane
et al. capture single cells on a Fluidigm C1 microfluidic chip. Cells are tracked
via live-cell imaging for several hours and then processed for single-cell RNA-
seq. This allows the integration of a dynamic approach (live-cell imaging) with a
static measurement (single-cell RNA-seq) while retaining the identity of the
cells, yielding an unprecedented view of dynamic processes leading up to the
time of RNA collection.
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genes might not be de-

tected, a phenomena termed

dropout. To improve statisti-

cal robustness, Lane et al.

(2017) first grouped cells

by NF-kB dynamics and

correlated the corresponding

transcriptomes, and then

they grouped cells by tran-

scriptomes and associated

their NF-kB dynamics.

This unified approach

(Figure 1) uncovered the rela-

tionship between NF-kB dy-

namics and the resulting

transcriptome. After lipo-

polysaccharide (LPS) treat-

ment, three subpopulations

of NF-kB dynamics were

observed. Two subpopula-

tions exhibited prolonged

NF-kB response, one with a

broad NF-kB peak and

another with a narrow initial

peak followed by reoccur-

ring activation. A third sub-

population exhibited only a

narrow NF-kB peak. Tran-

scriptomic analysis showed

that >100 genes changed in

expression levels, relative to

a control. In general, differ-

entially expressed genes,

including negative regulators
of the NF-kB response, appeared in the

two subgroups that exhibited prolonged

NF-kB levels. In contrast, no differentially

expressed genes appeared in the sub-

group that exhibited a narrow NF-kB

peak. By perturbing NF-kB dynamics,

the authors have convincingly showed

that NF-kB dynamics and transcription

are strongly associated and that varia-

tions in the expression of the cytokine

TNF-a can, in part, explain the heteroge-

neity in NF-kB response. Additionally, the

authors provide evidence for two mecha-

nisms by which temporal dynamics of

transcription factor levels could poten-

tially synchronize activation of targets

genes within cells.

Can this new approach be applied to

other transcription factors? The use of

a microfluidic device to visualize cells

and process them for single-cell RNA-

seq is convenient when dealing with

relatively short timescales, such as

the few hours required for NF-kB. The

dynamics of other transcription factors,
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such as p53, are on a slower timescale

(Lahav et al., 2004) and will therefore

require that cells be monitored for

longer periods of time (many hours to

days). The effect of microfluidic de-

vices on the survival and behavior of

cells for a prolonged period of time is

still unclear. Moreover, the isolation of

cells in single wells prevents the ability

to measure intra-cellular effects, such

as the autocrine response in the case

of NF-kB.

Another limitation, which is not unique

to this study, but general and intrinsic to

single-cell RNA-seq, is the low efficiency

of capturing RNA that leads to loss of

lowly to moderately expressed tran-

scripts. This, in turn, leads to increase

in technical variation (noise). Today,

most approaches for determining tech-

nical variation rely on either spike-in of

naked RNA (used in this study) or

accounting for noise by using modeling.

In addition to spike-in controls,

Lane et al. dealt with statistical variation
in single-cell RNA-seq by

grouping cells, either by their

NF-kB dynamics or by their

transcriptomes. Improving

the sensitivity and the cap-

ture efficiency of single-cell

RNA-seq, together with new

computational tools to

distinguish noise from low-

level signals, will be essen-

tial for overcoming this tech-

nical limitation.

Live-cell imaging and tran-

scriptomics can be thought

of as opposing techniques.

The study of signaling dy-

namics using live-cell imag-

ing focuses on cellular and

molecular details of one or

more pathways but misses

a wider view of other po-

tential effects and out-

comes. Transcriptomics, on

the other hand, produces

a view that shows the big

picture but lacks mechanistic

details (Figure 1). The present

study offers one approach

to bridging the gap be-

tween these two techniques.

Like yin and yang, these ap-

proaches are actually com-

plementary, and integrating

them promises to shed light
on the broad cellular programs that are ef-

fected by, and that control, the dynamics

of transcription factors in single cells,

which is critical for understanding cellular

behaviors and responses.
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