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Abstract

The field of cancer systems biology has made great strides in
understanding oncogenic pathway signaling and enumerating
mutations involved in oncogenesis. However, application of
these datasets to patient stratification, and to the design of
personalized therapy, is in its infancy. We review BRAF and
BRCA mutant targeted therapy, where patient stratification has
had critical, albeit mixed success. We contrast the work on
genomic targeted therapy with orthogonal studies on the dy-
namics of signaling pathways for designing optimal treatment
schedules. We suggest that an integrated approach,
combining genomic data and the dynamics of signaling path-
ways, is required for developing pathway specific computa-
tional models and for systematic deployment of targeted
combination regimes.
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Introduction
Cancer systems biology is the study of how complex
homeostatic systems are perverted by alterations to
signaling networks leading to uncontrolled growth and
proliferation. Two main perspectives have dominated
this field: a genomic (or more generally OMIC)
perspective focused on the identification of common

features of cancer samples to identify likely genomic
culprits of unconstrained growth, and a mechanistic
focus on how specific mutations alter cellular signaling.
However, outside of a few important examples, neither
of these approaches alone has been generally efficacious
in determining how to tailor treatment regimens to
specific tumors with known mutations. The limitations
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of the OMIC and signaling perspectives are comple-
mentary, one provides a broad overview and a ‘parts list’
of potential alterations and the other the details of each

genomic irregularities role.

The development of powerful predictive models of
disease states and outcomes to therapy require the
integration of low and high throughput datasets into
genome scale computational and dynamical frameworks.
These models will be parameterized with new forms of
experimental data, emphasizing the dynamic response
of cells to therapy at the level of single cells and popu-
lation dynamics. Here we will review successes in
identifying and characterizing tumor suppressing or

oncogenic pathways and suggest ways in which compu-
tational and dynamic experimental approaches may
make mutation tailored therapy more efficacious.
Genomic identification of frequent
mutations and assembly of a ‘parts list’
In cancer biology genomic data has largely been treated
as observational, with comparisons between normal tis-
sues and cancer derived from these tissues (Fig. 1A). As
large numbers of tumors were sequenced in the mid-late
2000s, statistical identification of recurrently mutated
genes became possible [1]. One particularly notable
success of this approach has been the identification of
Isocitrate DeHydrogenase (IDH) mutations as onco-
genic in glioma and acute myeloid leukemia (AML).
IDH mutations were first flagged as potentially onco-

genic due to recurrent active site (H132R predomi-
nantly) mutations in the IDH1 gene in glioblastoma [2].
IDH mutations were closely associated with younger
patients and better clinical outcomes [3]. Subsequent
studies confirmed IDH mutation as oncogenic, with
mutations in IDH1 and IDH2 resulting in neomorphic
production of the ‘onco-metabolite’ 2-hydroxyglutarate
(2-HG) from alpha-ketoglutarate [4]. Reanalysis of
sequencing data from a range of cancers showed that
IDH was mutated at low frequency in many tumors and
at relatively high frequency in AML [3]. IDH1 in-
hibitors are undergoing clinical trials for treatment of

solid and liquid tumors [5,6].

The discovery of IDH mutation as a common oncogenic
alteration illustrates the strengths of unbiased genome
wide studies for identifying novel tumorigenic muta-
tions. However, the majority of commonly mutated on-
cogenes and most oncogenic pathways such as myc,
RAS, and PIP3K were identified prior to the era of high
www.sciencedirect.com
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Figure 1
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Systems biology approaches to cancer biology. (A) Sequencing data comparing mutations or copy number alterations in normal and tumor samples
produce a “parts list” of potentially oncogenic alterations. (B) The dynamics of signaling molecules (middle panel) are measured in single cancer cells in
response to DNA damage and correlated with cellular outcomes (right panel). (C) The establishment of new models of cellular signaling networks is
required to predict the specific dynamic phenotypes that each mutation may cause, and the phenotypic consequences of such dynamical alterations in
response to treatment.
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throughput sequencing using older ‘genomic’ ap-
proaches. The first oncogenes were defined by their
ability to induce focus (colony) formation in vitro;
partially transformed rodent cells were transfected with
viruses or cDNA libraries and selected for their ability to
aberrantly proliferate [7,8]. These approaches identified
the transcription factor cMYC and small GTPase (h)
RAS as potent oncogenes, as well as the transforming

potential of dominant negative alleles of the tumor
suppressor p53, all of which were later confirmed to be
frequently mutated in tumor sequencing data [9e11].
www.sciencedirect.com
Sequencing data is now available for thousands of
tumors and analysis of these datasets suggests that
relatively few common oncogenes remain to be discov-
ered [12,13].

As OMIC approaches enter a post-discovery era, the
goals have subtly shifted towards understanding the
implications of identified alterations. Current attempts

to use genomic data to inform treatment has had mixed
success. One important example is in melanoma, where
genomic identification of frequent BRAFv600e
Current Opinion in Systems Biology 2017, 1:38–43
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mutations, has allowed widespread deployment of small
molecule BRAF inhibitor (BRAFi) therapy which show
substantial superiority to traditional chemotherapy
[14,15]. Other cases have been less clear cut. PARP
inhibitors (PARPi) for example, were developed as a
synthetic lethal treatment for tumors with a defect in
homologous recombination (typically the BRCA1/2
mutations). However, the genomic status of BRCA1/2 or

ATM activity is a moderate to poor predictor of drug
efficacy [16,17], suggesting that a more complete and
complex understanding of how genomic state predicts
DNA repair activity of a tumor is required for mean-
ingful stratification of patient populations.
The dynamics of cellular response and its
implications for therapy
Increasing the ability of genomic data to predict and
improve treatment outcomes requires incorporation of a
second strand of cancer systems biology: how cellular
systems dynamically respond to treatment. DNA damage
repair is one of the most highly conserved pathways from
bacteria to humans, involving a pause cell cycle pro-
gression and the mobilization of cellular resources to
repair the damage [18]. In multicellular organisms an

additional layer has been added to this regulation,
involving the induction of apoptosis when a cell ‘per-
ceives’ it has received so much DNA damage that a
faithful repair is impossible [19]. This combined DNA
damage/apoptotic response, and its relative strength and
dynamics, determine the degree to which genotoxic
therapies are efficacious against tumors and cause side
effects in normal tissues [20].

One striking example of the importance of dynamics in
the DNA damage response is the oscillatory signaling by
the tumor suppressing transcription factor p53 triggered

by double strand DNA breaks [21]. These oscillations
play a role in fate determination, and manipulation of
p53 dynamics results in different cellular outcomes
[22,23; Fig. 1B]. Computational models of this pathway
have been constructed based on decades of biochemical
and genetic data on the p53 system, and can be used to
design precise combinations of DNA damage and small
molecule inhibitors to modify p53 dynamics and achieve
various fate outcomes [22,24]. The response to other
apoptotic stimuli, such as Tumor Necrosis Factor, also
shows complex dynamic behavior which directly de-

termines the cellular outcome of the stimulus [25].

A more comprehensive understanding of the dynamical
response of tumors and tissues to therapy will require a
genomic perspective linking treatment to gene expres-
sion programs and ultimately to phenotype. Recent
works by the Regev and Smale groups on immune
cellsddendritic and macrophages, respectivelydhave
shown how high resolution temporal profiling of gene
expression after stimulus can reveal both mechanistic
Current Opinion in Systems Biology 2017, 1:38–43
insights into gene expression regulation, as well as to the
phenotypic response of cells to stimulus [26,27]. The
expansion of sequencing for gene expression analysis
suggests that these studies will be soon complemented
with many others, allowing for a genome scale analysis of
the dynamical response of cells to different stimuli and
how these expression dynamics relate to cellular phe-
notypes. Such genome wide measurements of gene

expression dynamics will provide new insights and put
new stress on the design of computational models.
Towards a model based unification of
genomic and dynamic data to design
therapy regimes
New approaches are required to use increasingly ubiq-
uitous genomic mutational information to predict tumor
specific changes in the dynamics of gene expression and
associated phenotypes following therapy. This goal ne-
cessitates a quantitative understanding of oncogenic and
DNA damage signaling pathways and how they change
in the context of cancer with a particular mutational
profile. Current approaches mainly aim to link tumor
mutations to sensitivity to a specific drug or therapy (in
one or multiple cancer types, so called basket trials). For

example, PARPi therapy is typically indicated for
BRCA1/2 mutated tumors. However, this approach is
clearly limited due to the multiplicity of mutations in a
single cancer and uncertainly about the interactions
between these mutations. Indeed, the sensitivity of
BRCA1 mutant cell lines can be suppressed by a second
mutation in Rev7 or 53bp1, rendering these double
mutant lines resistant to PARPi therapy and demon-
strating the need for a more systematic framework
[28,29].

To complement PARPi therapy other DNA damage

signaling pathways have been explored as potential tar-
gets. For example, the blockade of the ATR pathway has
been proposed as potentially a potent synergistic com-
plement to PARPi therapy [30,31]. However, these
combinations have the risk of greatly enhancing the
toxicity of therapy, especially with co-drugging of targets
such as ATR that are essential for normal body function
[32,33]. This suggests that time dependent therapy,
where systemic PARPi or other chemotherapy, is
complemented with precisely timed application of DNA
damage repair inhibitors such as ATRi or ATMi. The

complexities of designing such regimes are formidable,
and require quantitative understanding of the kinetics
of various DNA damage and repair processes in vivo, as
well as the toxicity spectrum of each drug integrated
into a model based framework.

The earliest approaches to model designed therapy re-
gimes were focused on radiation therapy and applied
quantitative models of the differential response of
normal and cancerous tissue to design dose-fractionation
www.sciencedirect.com
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schedules for optimal tumor control [34e36]. Analo-
gously, early efforts in chemotherapy dosage design used
phenomenological models of tumor growth to compute
the minimal therapy regime to maintain some (low)
tumor mass [37,38]. More recently, the design of phase
one trials and dose escalation protocols to identify
maximum tolerable doses of novel drugs or drug com-
bination have begun to incorporate model based regimes

to better estimate these values [39]. These models seek
to minimize or eliminate tumor populations, but do not
generally take into account response heterogeneity or
the emergence of resistance to treatment.

More mechanistic models incorporating biological fea-
tures of certain tumors, such as heterogeneity of popu-
lation states and the emergence of resistance, have also
been developed. For example, elegant work on optimal
dosing strategy incorporating different cellular popula-
tions has been done by the Michor group in the context

of radiotherapy [40] and on the emergence of resistance
to EGFR inhibitor treatment [41]. These models design
dosing regimens constrained by the toxicity and feasi-
bility of schedule, and return an optimized and poten-
tially personalized schedule, taking into account, for
example, starting tumor burden and patient health
status. However, these approaches are not yet flexible
enough to predict or integrate drugedrug interactions
and generally rely on simplified assumptions about cell
killing as the major mechanism of the treatment action.

Models of tumor response to chemotherapy have typi-
cally focused on genotoxic compounds where the rela-
tively well understood phenomena of DNA repair and
proliferation are the major determinants of efficacy.
Beyond genotoxic therapy, the incorporation of molec-
ular details into therapy response models becomes more
complicated as many of the targeted therapies hit
pathways rich in feedback regulation such as the MAP
kinase/ERK pathway [42]. This pathway is commonly
mutated in melanoma with the BRAFv600e mutation
present in roughly 50% of melanomas [43]. Though
often effective initially, resistance inevitably develops to

BRAF inhibitor therapy (BRAFi) and interest has
therefore grown in combining BRAFi with additional
targeted therapy to prevent or slow the emergence of
resistance.

Further blockade of the MAPK pathway by inhibition of
MEK or ERK [44], and targeting an orthogonal pathway
such as Yap [45] have been shown to act synergistically
with BRAFi, but both of these combinations were
identified with ad hock methods. To develop a rigorous
approach for identifying promising drug combinations

the Sander’s group has used a combination of experi-
mental data and computational modeling to predict
active combination therapy regimes [46]. This approach
uses a relatively simple interaction based model to
predict cell killing and arrest in response to inhibition of
www.sciencedirect.com
various nodes in a model corresponding to proteins or
interactions. Critically, this approach is amenable to
simulating the effect of multiple simultaneous treat-
ments allowing combinatorial therapies to be modeled.
Like other analogous signaling models for TNFresponse
[25,47] and NFKB signaling [48], the Sander’s model
provides a biologically validated complex model that is
amenable to predicting how cellular signaling behaves in

the presence of mutations or various stimuli.

We suggest that combining mechanistic models, such as
the MAPK model constructed by the Sander’s group,
with population based time dependent dosing models,
such as those devised by the Michor group, has the
potential to unify the genomic mutation, dynamic
signaling data and therapeutic dosing strategies into a
coherent whole (Fig. 1C). In the case of DNA damage
and p53 dynamics, for example, it may be possible to
combine MDM2 inhibitors, which prevent the degra-

dation of p53, and chemotherapy agents or radiation to
synergistically activate p53 signaling. As both MDM2
inhibitors [49] and chemotherapy agents often have
substantial myelotoxicity, dosing schemes aimed to in-
crease tolerability will likely be required. Radiotherapy,
in combination with MDM2 inhibitors, offers an op-
portunity to spatially segregate therapy aiming strong
local activation of p53 at the tumor by the intersection
between targeted radiation and systemic MDM2 inhi-
bition. A model based understanding of how p53 dy-
namics and cellular fate are modulated by DNA damage

andMDM2 inhibitors or DNA damage related inhibitors
such as ATMi or ATRi would be required to optimally
design a treatment scheme. Further, to determine if a
given patient would respond, the genotypic state of p53
and its core regulators ATM and CHK2 would need to
be incorporated. Targeted therapy against p53 is only
one possibility, and more generally we suggests that a
mature personalized therapy protocol will integrate
genomic information on mutational status with compu-
tational models of the dynamics of signaling pathways to
identify both optional drug combinations and the rela-
tive timing of each drug.
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